期刊文献+

非线性降维算法及其在医院绩效考核上的应用 被引量:4

Nonlinear dimensionality reduction algorithm and application to hospital performance evaluation
下载PDF
导出
摘要 流形学习算法中的等距嵌入算法(ISOMAP)具有对离群点敏感的瑕疵,针对此问题,提出利用基于共享近邻的距离度量方式,并充分利用了流形上对象的局部密度信息,有效改善了算法的性能,提高了算法的健壮性。同时,首次尝试将该改进的流形学习算法应用于医院绩效考核。人工数据与真实数据上的实验表明,改进的算法健壮且有效,在绩效考核上应用成功。 Manifold learning algorithm ISOMAP is sensitive to the outliers.To solve this problem,the paper employed the distance measurement based on shared nearest neighbor and made a full use of the local density information of points on the manifold,which resulted in an effective improvement on the robustness of the algorithm.Meanwhile,the paper first attempted to apply the improved manifold learning algorithm to the hospital performance evaluation.The experiments on the artificial data and real-world data show that the improved algorithm is robust and effective,and the application to the performance evaluation is successful.
出处 《计算机应用》 CSCD 北大核心 2010年第4期1004-1007,共4页 journal of Computer Applications
关键词 非线性降维 共享近邻 等距嵌入算法 离群点 绩效考核 nonlinear dimensionality reduction shared nearest neighbor Isometric Mapping(ISOMAP) outlier performance evaluation
  • 相关文献

参考文献14

  • 1TENENBAUM J B,SILVA V,LANGFORD J C.A global geometric framework for nonlinear dimensionality reduction[J].Science,2000,290(5500):2319-2323.
  • 2ROWELS S T,SAUL L K.Nonlinear dimensionality reduction by local linear embedding[J].Science,2000,290(5500):2323-2326.
  • 3BELKIN M,NIYOGI P.Laplacian eigenmaps and spectral techniqnes for embedding and clustering[C]// Proceedings of Neural Information Processing Systems Conference.Cambridge,MA:MIT Press,2001:585-591.
  • 4ZHANG Z Y,ZHA H Y.Principal manifolds and nonlinear dimension reduction via local tangent space alignment[J].SIAM Journal of Scientific Computing,2004,26(1):313-338.
  • 5申富平,马玉芳,戎辉辉.中国旅行社企业财务绩效评价指标研究--基于熵值法的视角[J].经济与管理,2008,22(6):81-84. 被引量:2
  • 6赵亚丽,西广成,刘艳骄.用相关系数法探讨齿痕舌出现的特点[J].中国中医基础医学杂志,2003,9(9):77-79. 被引量:11
  • 7朱颖超.基于主成分分析法的炼油企业绩效评价[J].工业技术经济,2008,27(6):81-84. 被引量:5
  • 8GENG X,ZHAN D C,ZHOU Z H.Supervised nonlinear dimensionality reduction for visualization and classification[J].IEEE Transactions on Systems,2005,35(6):1098-1107.
  • 9VLACHOS M,DOMENICONI C,GUNOPULOS D,et al.Non-linear dimensionality reduction techniques for classification and visualization[C]// Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.New York:ACM Press,2002:645-651.
  • 10CHOI H,CHOI S.Robust kernel isomap[J].Pattern Recognition,2007,40(3):853-862.

二级参考文献9

共引文献15

同被引文献47

引证文献4

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部