期刊文献+

基于支持向量机的多类音频分类 被引量:4

MULTI-CLASS AUDIO CLASSIFICATION BASED ON SUPPORT VECTOR MACHINE
下载PDF
导出
摘要 研究一种用支持向量机(SVM)进行多类音频分类的方法,其中引入增广两类分类法(AB法)设计多类分类器。该算法把音频分为四类:音乐、纯语音、带背景音的语音和典型的环境音,并分析了这几类音频的八个区别性特征,包括修正低能量成分比率(MLER)和修正基频(MPF)两个新特征以及频域总能量、子带能量、频率中心等其它六个基本特征,综合考察了不同特征集在基于SVM分类器中的分类精度。实验结果表明,提取的音频特征有效,基于SVM的多类音频分类效果良好。 In this paper we studied a multi-class audio classification algorithm performed by the support vector machine(SVM),in which augmented binary-class(AB) classification method was introduced to design the multi-class classifier.Four classes were considered in audio frequency:music,pure speech,speech over background and typical environment sound,and eight discriminating features of these audio classes were analysed,including the two new ones proposed by the author-modified low energy component ratio(MLER) and modified pitch frequency(MPF),and other six basic features such as spectrum energy,sub-band powers,frequency centroid,etc.The classification accuracies of different features' set in SVM-based audio classifier were evaluated comprehensively.Experiment results show that the audio features selected in this paper are effective for audio classification,and the result of applying SVM to multi-class audio classification is good.
出处 《计算机应用与软件》 CSCD 2010年第4期98-101,共4页 Computer Applications and Software
基金 上海高校选拔培养优秀青年教师科研专项基金项目(DXZ06007)
关键词 支持向量机 音频分类 增广两类分类法 Support vector machine Audio classification Augmented binary-class classification method
  • 引文网络
  • 相关文献

参考文献7

  • 1边肇祺,张学工.模式识别[M].2版.北京:清华大学出版社,2002.
  • 2John Saunders.Real-time discrimination of broadcast speech/music[C]//Int'1 Conf Acoustic,Speech,and Signal Processing,Atlanta,1996.
  • 3Scheirer E,Slaney M.Construction and evaluation of a robust multifeature music/speech discriminator[C]//Int'1 Conf Acoustic,speech,and Signal Processing,Munich:IEEE Press,1997:1331-1334.
  • 4郑怡文.典型的音频分类算法[J].计算机与现代化,2007(8):59-63. 被引量:3
  • 5李国正 王猛 增华军 译 NelloCristianini JohnShawe-Taylor著.支持向量机导论[M].北京:电子工业出版社,2004..
  • 6卢坚,陈毅松,孙正兴,张福炎.语音/音乐自动分类中的特征分析[J].计算机辅助设计与图形学学报,2002,14(3):233-237. 被引量:26
  • 7Platt J C.Sequential minimal optimizer:A fast algorithm for training support vector machines.Technical ReportMSR-TR-98-14[R].Microsoft Research,Redmond,1998.

二级参考文献14

  • 1齐俊英,孙劲光,高爱东.基于内容的音频自动分类方法[J].辽宁工程技术大学学报(自然科学版),2005,24(z1):170-172. 被引量:5
  • 2续鸿飞,肖明.音频检索综述[J].晋图学刊,2005(6):15-19. 被引量:8
  • 3张一彬,周杰,边肇祺.基于内容的戏曲分类与分析[J].计算机工程,2006,32(12):182-183. 被引量:4
  • 4[1]Hao Jiang, Tony Lin, Hongjiang Zhang. Video segmentation with the support of audio segmentation and classification[C]. In: Proceedings of ICME'2000-IEEE International Conference on Multimedia and Expo, New York, 2000,3:1507~1510
  • 5[2]Tong Zhang, C-C Jay Kuo. Heuristic approach for generic audio data segmentation and annotation[C]. In: Proceedings of the 7 th ACM International Conference on Multimedia, Orlando, 1999. 67~76
  • 6[3]Savitha Srinivasan, Dragutin Petkovic, Dulce Ponceleon. Towards robust features for classifying audio in the cudeVideo system[C]. In: Proceedings of the 7th ACM International Conference on Multimedia, Orlando, 1999. 393~400
  • 7[4]Guojun Lu, Templar Hankinson. A technique towards automatic audio classification and retrieval[C]. In: Proceedings of the 4th IEEE International Conference on Signal Processing, ICSP 1998, Beijing, 1998,2:1142~1145
  • 8[5]L Rabiner, B H Juang. Fundamentals of Speech Recognition[M]. New Jersey: Prentice-Hall International, 1993
  • 9[6]Rivarol Vergin, Douglas O'Shaughnessay. Generalized mel-frequency cepstral coefficients for large-vocabulary speaker-independent continuous speech recognition[J]. IEEE Transactions on Speech and Audio Processing, 1999, 7(5):525~53
  • 10[7]J T Foote. Content-based retrieval of music and audio[C]. C-C J Kuo, et al. editor. In: Proceedings of SPIE, Multimedia Storage and Archiving Systems II, 1997, 32(29):138~147

共引文献110

同被引文献39

引证文献4

二级引证文献17

相关主题

;
使用帮助 返回顶部