期刊文献+

基于神经网络和CFS特征选择的网络入侵检测系统 被引量:16

A Network Intrusion Detection System Based on Neural Networks and the CFS-Based Feature Selection
下载PDF
导出
摘要 本文提出了一种新型的基于CFS特征选择和神经网络的高效入侵检测模型。通过使用该模型对经过特征提取后的攻击数据的训练学习,可以有效地识别各种入侵。在经典的KDD Cup 1999入侵检测数据集上的测试说明,该模型能够高效地对攻击模式进行训练学习,从而正确有效地检测网络攻击。 This paper introduces a novel intrusion detection model based on neural networks and the CFS (correlationbased feature selection) based feature selection mechanism. It can effectively detect several types of attacks by combining neural networks and the CFS-based feature selection. The experiments upon the well-known KDD Cup 1999 intrusion detection dataset demonstrate that the model is actually effective in practice.
作者 孙宁青
出处 《计算机工程与科学》 CSCD 北大核心 2010年第6期37-39,117,共4页 Computer Engineering & Science
关键词 入侵检测 特征选择 神经网络CFS intrusion detection feature selection neural network correlation-based feature selection
  • 相关文献

参考文献7

  • 1Bykova M, Ostermann S, Tjaden B. Detecting Network Intrusions via a Statistical Analysis of Network Packet Characteristics[C]//Proc of the 33rd Southeastern Symp on System Theory, 2001.
  • 2Sun N Q, Li Y. Intrusion Detection Based on Back-Propagation Neural Network and Feature Selection Mechanism[C] //Proc of FGIT'09,2009 : 151-159.
  • 3Yu L, Liu H. Efficient Feature Selection via Analysis of Relevance and Redundancy[J]. Journal of Machine Learning Research, 2004(5) : 1205-1224.
  • 4Liu H, Yu L. Towards Integrating Feature Selection Algorithms for Classification and Clustering[J]. IEEE Trans on Knowledge and Data Engineering, 2005,17 (3) : 1-12.
  • 5Forres S, Perelson A S, Allen L, et al. Self-Nonself Discrimination in a Computer[C]//Proc of the 1994 IEEE Symp on Research in Security and Privacy, 1994:120-128.
  • 6MARK A H. Correlation-Based Feature Selection for Discrete and Numeric Class Machine Learning[C]//Proc of the 17th Int'l Conf on Machine Learning,2000:359-366.
  • 7Knowledge Discovery in Databases DARPA Archive [EB/ OL]. [-2009-05-16]. http://www, kdd. ics. uci. edu/databases/kddcup99/task, html.

同被引文献128

引证文献16

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部