期刊文献+

具免疫时滞的HIV感染模型动力学性质分析 被引量:13

Dynamics of a HIV Infection Model with Delay in Immune Response
原文传递
导出
摘要 讨论了一类具免疫时滞的HIV感染模型.分析了未感染平衡点的全局渐近稳定性,给出了感染无免疫平衡点及感染免疫平衡点局部渐近稳定的充分条件.数值模拟结果表明,当易感细胞生成率的取值使得基本再生数满足平衡存在的条件且低于某一临界值时,时滞对平衡点的稳定性没有影响;若大于该临界值,随着时滞增大,稳定性开关发生,平衡点不稳定,出现一系列Hopf分支,最终表现为周期波动模式. In this paper,a model for HIV infection with delay in immune response is considered. The global stability of the infection-free equilibrium is analyzed,and the sufficient conditions of local stability of the CTL-absent infection equilibrium and CTL-present infection equilibrium are obtained.Numerical results show that if production rate of uninfected cells is large so that when the basic reproductive ratio satisfies the existing condition of CTL-present infection equilibrium and it is below a certain threshold,the delay have no effect to the stability of the equilibrium; but if the basic reproductive ratio is greater than the certain threshold,and delay in immune response increase.the stability switches occur and equilibrium is unstable,moreover,a series of Hopf bifurcations and periodic solutions are observed.
出处 《生物数学学报》 CSCD 北大核心 2009年第4期624-634,共11页 Journal of Biomathematics
基金 湖南省自然科学基金资助项目(07JJ3001) 南华大学博士科研启动基金项目(5-XQD-2006-8)
关键词 HIV感染 时滞 免疫应答 稳定性开关 周期解 HIV infection Delay Immune response Stability switches Periodic solutions
  • 相关文献

参考文献15

  • 1李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 2闫萍,吴昭英.具潜伏期的无免疫型传染病动力学的微分模型[J].生物数学学报,2006,21(1):47-56. 被引量:22
  • 3Perelson A S, Nelson P W. Mathematical analysis of HIV-1 Dynamics in vivo[J]. SIAM Review, 1999, 41(1):3-44.
  • 4Levy.艾滋病病毒与艾滋病的发病机制[M].北京:科学出版社,2000.
  • 5Kaifa Wang, Wendi Wang, Haiyan Pang, et al. Complex dynamic behavior in a viral model with delayed immune response[J]. Physica, 2007, D(226):197-208.
  • 6Martin Nomak A, Robert M. May, virus dynamics[M]. New York: OxfordUniversity Press, 2000.
  • 7Buric N, Mudrinic M, Vasovi N. Time delay in a basic model of the immune response[J]. Chaos, Solitons and Fractals, 2001, 12, 483-489.
  • 8Sandor Kovacs. Dynamics of an HIV/AIDS model-The effect of time delay[J]. Applied Mathematics and Computation, 2007, 188, 1597-1609.
  • 9Patrick Nelson W, Alan S. Perelson,Mathematical Analysis of delay differential equation model of HIV-1 infection[J]. Mathematical Biosciences, 2002, 179, 73-94.
  • 10Huiyan Zhu, Xingfu Zhou. Impact of delays in cell infection and virus production on HIV-1 dynamics[J]. Mathematical Medicine and Biology, 2008, 25, 99-112.

二级参考文献4

  • 1李大潜.传染病动力学的一个偏微分方程模型[J].高校应用数学学报,1986,1(9):17-26.
  • 2李大潜.非终身免疫型传染病动力学的偏微模型[J].生物数学学报,1986,(1):29-36.
  • 3Anderson R M.The persistence of direct life cycle infectious diseases within populations of hosts[J].Lectures on mathematices in the life Sciences,American Mathematical Society,1979,12(1):1-67.
  • 4Anderson R M,May R M.Population biology of infectious diseases[J].Nature,1979,280(5721):361-367.

共引文献37

同被引文献108

引证文献13

二级引证文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部