期刊文献+

应用金芯片技术预测肾功能损害的临床应用研究

Research on the clinical application of the prediction of early kidney injury by Au protein chip technology
下载PDF
导出
摘要 目的探讨利用金(Au)芯片检测尿蛋白质指纹图谱在预测肾功能损害中的应用价值。方法利用表面增强激光解吸电离飞行时间质谱(SELDI-TOF-MS)技术及Au芯片检测186例肾病患者和188例对照者尿蛋白质指纹图,分析肾病患者与对照组尿蛋白质表达差异并筛选标志蛋白质,结合人工神经网络(ANN)技术建立智能预测模型,评价其诊断肾病的应用价值。对部分差异蛋白质通过电喷雾四级杆飞行时间质谱(ESI-Q-TOF)进行鉴定。用免疫散射比浊法检测尿微球蛋白并与蛋白质指纹图谱结果比较,评价SELDI-TOF-MS检测性能。结果肾病患者与对照者尿中共检测到214个蛋白质峰,有69个蛋白质峰差异有统计学意义(P<0.05),筛选其中质荷比(m/z)11 735、23 770、51 720、58 720、67 650、80 045、91 240蛋白质建立的ANN模型预测肾功能损害的灵敏度为98.8%(85/86),特异度为96.6%(85/88)。蛋白鉴定结果表明m/z 11 735、23 770、67 650、80 045蛋白质分别为β2-微球蛋白、α1-微球蛋白、白蛋白、转铁蛋白。SELDI-TOF-MS检测微球蛋白较免疫散射比浊法更灵敏。结论基于Au蛋白芯片技术的尿蛋白质指纹图谱检测,可快速、灵敏、高通量的显示尿蛋白质表达情况,对诊断肾损伤、判断蛋白尿类型及治疗评价具有重要的应用价值。 Objective To determine urine protein profilings by Au chip and discuss the clinical significance in sensitivity and the rapid prediction of renal function.Methods The study collected 186 patients with nephropathy and 188 controls.The urine protein profilings were determined by surface-enhanced laser desorption-ionization time of flight mass spectrometry(SELDI-TOF-MS) and Au chip.The expression differences of urine protein and protein markers were analyzed and screened between the patients and controls.An artificial neural network(ANN) pattern was developed to evaluate the application significance.The differential protein markers were primarily identified by electrospectrometry ionization quadrupole time of flight mass spectrometry(ESI-Q-TOF-MS).The results of urine microglobulin detected by immune scatter turbidimetry and protein profilings detected by SELDI-TOF-MS were comparatively analyzed.Results Total of 214 protein peaks and 69 distinguished peaks(P0.05) were obtained from the urine samples of patients with nephropathy and the controls.The peaks with mass-to-charge ratio(m/z) 11 735,23 770,51 720,58 720,67 650,80 045 and 91 240 were screened by ANN.The sensitivity was 98.8%(85/86) and the specificity was 96.6%(85/88).4 specific protein peaks(m/z at 11 735,23 770,67 650 and 80 045)were identified and considered as β2-microglobulin,α1-microglobulin,albumin and transferrin,respectively.The SELDI-TOF-MS was more sensitive than immune scatter turbidimetry.Conclusions Au chip is a fast,sensitive and high-through method to detect urine protein profilings from patients with nephropathy.It has the application significance in the diagnosis of nephropathy,the identification of albuminuria and the evaluation of renal injury.
出处 《检验医学》 CAS 北大核心 2010年第4期278-282,共5页 Laboratory Medicine
基金 四川省卫生厅资助项目(080331)
关键词 蛋白芯片 肾病 蛋白质标志物 人工神经网络 Protein chip Nephropathy Protein marker Artificial neural network
  • 相关文献

参考文献9

  • 1Trof RJ,Di Maggio F,Leemreis J,et al. Biomarkers of acute renal injury and renal failure[ J ]. Shock,2006, 26(3) : 245-253.
  • 2朱国民,马兰.肾脏早期损害指标对2型糖尿病早期肾病的诊断价值[J].检验医学,2008,23(6):692-693. 被引量:8
  • 3丁银环,胡琼英,梁双花,姜伟,周明术,严莉,王开正.运用内标校准法提高表面增强激光解吸电离飞行时间质谱检测中的重复性[J].中华检验医学杂志,2009,32(3):337-339. 被引量:15
  • 4Wadie BS, Badawi AM, Abdelwahed M, et al. Application of artificial neural network in prediction of bladder outlet obstruction: a model based on objective, noninvasive parameters [J].Urology, 2006,68 ( 6 ) : 1211-1214.
  • 5Wang Z, Feng X, Liu X, et al. Involvement of potential pathways in malignant transformation from oral leukoplakia to oral squamous cell carcinoma revealed by proteomic analysis [ J ]. BMC Genomics, 2009,19 (10) : 383.
  • 6姜伟,杨永长,肖代雯,黄波,胡琦,黄文芳.尿蛋白标志物模型诊断糖尿病肾病的初步研究[J].中国糖尿病杂志,2009,17(6):437-439. 被引量:5
  • 7Ditrazi H, Muller GA, Lindner S, et al. Characterization of diabetic nephropathy by urinary proteomic analysis: identification of a processed ubiquitin form as a differentially excreted protein in diabetic nephropathy patients[J]. Clin Chem, 2007, 53(9) : 1636-1645.
  • 8Zhang X, Jin M, Wu H, et al. Biomarkers of lupus nephritis determined by serial urine proteomics [ J ]. Kidney Int, 2008, 74 (6) : 799-807.
  • 9Nguyen MT, Ross GF, Dent CL,et al. Early prediction of acute renal injury using urinary proteomics[ J]. Am J Nephrol,2005,25(4) : 318-326.

二级参考文献14

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部