期刊文献+

基于帧间差分的彩色视频背景提取 被引量:6

Background Extraction of Color Video Based on the Frame-Difference
下载PDF
导出
摘要 针对动态目标检测中的图像背景实时提取问题,采用红绿蓝三分量综合考虑的方法,进行了比较深入的算法研究。研究表明,如果图像序列时间段过短,背景中就会有目标空洞,如果图像序列时间段过长,则不能反映实时背景,在后续目标检测中就会引起较大误差。考虑合理的视频场景区域的动态目标密集程度因素,就可以较好地兼顾提取背景的实时性和背景中目标空洞的消除。 Based on the frame-difference of color video stream during a time interval, we can extract the real-time background image of the video with moving objects in it. By using comprehensive means of red, green and blue com- ponents, this paper conducts a more in-depth algorithm to real-time extraction of image background problem of moving object detection. The research shows that, if the time interval is too short, the extracted background will have holes in it; if the time interval is too long, the extracted background will not be real time. This will cause errors to follow processing of moving objects detection. Both the real-time and the holes of the extracted background can has a good result if we select a reasonable time interval according to the size and the moving velocities of the objects in video.
出处 《成都信息工程学院学报》 2010年第2期167-171,共5页 Journal of Chengdu University of Information Technology
基金 成都信息工程学院引进人才科研启动项目(KYTZ20060603)
关键词 信息处理 智能监控 动态目标检测 背景图像提取 帧间差分 information processing intelligent surveillance detection of moving objects background image extrac-tion frame-difference
  • 引文网络
  • 相关文献

参考文献8

二级参考文献140

  • 1刘彦宏,杜威,李华.足球视频序列中球员的分割与跟踪算法[J].系统仿真学报,2001,13(S2):90-93. 被引量:7
  • 2[25]Kohle M, Merkl D, Kastner J. Clinical gait analysis by neural networks: Issues and experiences. In: Proc IEEE Symposium on Computer-Based Medical Systems, Maribor, Slovenia, 1997. 138-143
  • 3[26]Meyer D, Denzler J, Niemann H. Model based extraction of articulated objects in image sequences for gait analysis. In: Proc IEEE International Conference on Image Processing, Santa Barbara, California 1997. 78-81
  • 4[27]McKenna S et al. Tracking groups of people. Computer Vision and Image Understanding, 2000, 80(1):42-56
  • 5[28]Karmann K, Brandt A. Moving object recognition using an adaptive background memory. In: Cappellini V ed. Time-varying Image Processing and Moving Object Recognition. 2. Elsevier, Amsterdam, The Netherlands, 1990
  • 6[29]Kilger M. A shadow handler in a video-based real-time traffic monitoring system. In: Proc IEEE Workshop on Applications of Computer Vision, Palm Springs, CA, 1992.1060-1066
  • 7[30]Stauffer C, Grimson W. Adaptive background mixture models for real-time tracking. In: Proc IEEE Conference on Computer Vision and Pattern Recognition, Fort Collins, Colorado, 1999, 2:246-252
  • 8[31]Wren C, Azarbayejani A, Darrell T, Pentland A. Pfinder: Real-time tracking of the human body. IEEE Trans on Pattern Analysis and Machine Intelligence, 1997, 19(7):780-785
  • 9[32]Arseneau S, Cooperstock J. Real-time image segmentation for action recognition. In: Proc IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, Victoria, Canada, 1999. 86-89
  • 10[33]Sun H, Feng T, Tan T. Robust extraction of moving objects from image sequences. In: Proc the Fourth Asian Conference on Computer Vision, Taiwan, 2000.961-964

共引文献342

同被引文献58

引证文献6

二级引证文献53

;
使用帮助 返回顶部