期刊文献+

求解非线性回归问题的Newton算法 被引量:23

A Newton Algorithm for Nonlinear Regression
下载PDF
导出
摘要 针对大规模非线性回归问题,提出基于静态储备池的Newton算法.利用储备池搭建高维特征空间,将原始问题转化成与储备池维数相关的线性支持向量回归问题,并应用Newton算法求解.鲁棒损失函数的应用可抑制异常点对预测结果的干扰.通过与SVR(Support Vector Regression)及储备池Tikhonov正则化方法比较,验证了所提方法的快速性、较高的预测精度和较好的鲁棒性. A Newton algorithm is adopted in static reservoir for large scale nonlinear regression in the paper. Based on high-dimension 'reservoir' state space which translates the nonlinear regression to linear support vector regression(SVR), the Newton optimization is investigated. Meantime, the robust loss functions are adopted to restrain the interference of outliers. Comparisons with SVR(Support Vector Regression) and 'reservoir' Tikhonov regularization method in experiment, the results demonstrate the proposed algorithm has a fast operation speed, high prediction accuracy and good robustness.
作者 韩敏 王亚楠
出处 《计算机学报》 EI CSCD 北大核心 2010年第5期841-846,共6页 Chinese Journal of Computers
基金 国家自然科学基金(60674073) 国家"八六三"高技术研究发展计划项目基金(2007AA04Z158) 国家科技支撑计划资助项目(2006BAB14B05) 国家"九七三"重点基础研究发展规划项目基金(2006CB403405)资助~~
关键词 支持向量回归 静态储备池 Newton算法 鲁棒性 support vector regression static reservoir Newton algorithm robustness
  • 相关文献

参考文献9

  • 1Jaeger H.Reservoir riddles:Suggestions for echo state network research//Proceedings of the IEEE International Joint Conference on Neural Networks.Montreal,QC,Canada,2005,8:1460-1462.
  • 2Huang G B,Zhu Q Y,Siew C K.Extreme learning machine:Theory and applications.Neurocomputing,2006,70 (1-3):489-501.
  • 3Shi Z W,Han M.Support vector echo-state machine for chaotic time-series prediction.IEEE Transactions on Neural Networks,2007,18(2):359-372.
  • 4Kao W C,Chuang K M,Sun C L et al.Decomposition methods for linear support vector machines.Neural Computation,2004,16(8):1689-1704.
  • 5Fung G M,Mangasarian O L.A feature selection Newton method for support vector machine classification.Computational Optimization and Applications,2004,28(2):185-202.
  • 6Chapelle O.Training a support vector machine in the primal.Neural Computation,2007,19(5):1155-1178.
  • 7Bo L F,Wang L,Jiao L C.Recursive finite Newton algorithm for support vector regression in the primal.Neurocomputing,2007,19(4):1082-1096.
  • 8袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 9Suykens J A K,Brabanter J D,Lukas L et al.Weighted least squares support vector machines:Robustness and sparse approximation.Neurocomputing,2002,48(1-4):85-105.

二级参考文献1

共引文献80

同被引文献138

引证文献23

二级引证文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部