期刊文献+

时间序列中方差的结构变点的小波识别(英文) 被引量:1

Wavelet Identification of Structural Change Points in Volatility Models for Time Series
下载PDF
导出
摘要 本文给出了时间序列中方差的小波系数的两种估计:连续估计和离散估计.这两种估计可以用来检测时间序列中方差的结构变点.利用这两种估计我们给出了方差变点的位置和跳跃幅度的估计,并且显示出这些估计可达到最佳收敛速度.同时,我们还给出了这些估计的收敛速度以及检验统计量的渐进分布! We propose two estimators,an integral estimator and a discretized estimator,for the wavelet coefficient of volatility in time series models.These estimators can be used to detect the changes of volatility in time series models.The location estimators of the jump points,we proposed,have been shown to have the minimax convergence rate,which is the optimal rate for the estimation of change points.The jump sizes and locations of change points can be consistently estimated by wavelet coefficients.The convergency rates of these estimators are derived and the asymptotic distributions of the statistics are established.
出处 《应用概率统计》 CSCD 北大核心 2010年第2期207-219,共13页 Chinese Journal of Applied Probability and Statistics
关键词 方差变点 小波系数 核估计 局部线形估计 Change points in volatility wavelet coefficient kernel estimation local polynomial smoother
  • 相关文献

参考文献6

  • 1Wang, Y., Jump and sharp cusp detection by wavelets, Biometrika, 82(1995), 385--39?.
  • 2Wong, H., Ip, W., Li, Y. and Xie, Z., Threshold variable selection by wavelets in open-loop threshold autoregressive models, Statistics and Probability Letters, 42(1999), 375 -392.
  • 3Wong, H., Ip, W. and Li, Y., Detection of jumps by wavelets in a heteroscedastic autoregressive model, Statistics and Probability Letters, 52(2001), 365 -372.
  • 4Chen, G., Choi, Y. and Zhou, Y., Detections of changes in return by a wavelet smoother with conditional heteroscedastic volatility,Journal of Econometrics, 143(2008), 227-262.
  • 5Nadaraya, E.A., On estimating regression, Theory of Probability and Its Applications, 9(1964), 141- 142.
  • 6Fan, J. and Gijbels, I., Local Polynomial Modeling and Its Applications, Chapman and Hall, London, 1996.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部