摘要
结合气体爆炸动力学弱冲击波爆炸理论等知识,建立了爆炸后的超压、温度随距点火源距离变化的非线性计算公式,并把超压计算值和实验值进行了对比.结果表明:对于体积分数分别为5.0%,7.5%,9.5%的100m。瓦斯爆炸后的巷道内大气温度变化范围分别是:582.5~309.7,709.2~315.2,825.0~320.0K;对于体积分数分别为5.0%,7.5%,9.5%的200ITI。瓦斯爆炸后的巷道内大气温度变化范围分别是:688.3~314.3,867.4~321.8,1028.4~328.3K.爆炸后的温度随着距离的增加先迅速递减后平缓降低到矿井正常空气温度,随着爆源的体积分数、体积的增加所产生的最高温度越高,温度变化范围越大.
Gas explosion dynamics and weak explosion theory were used to study the overpres- sure and temperature after an explosion as a function of distance from the fire source. The o- verpressure values were compared to experimental results. The ignition of 100 ma of methane in air (5%, 7.50/oo or 9.5% methane) results in a temperature change of 582.5--309.7, 709.2 --a15.2 or 825.0--320.0 K. The changes were 688.3--314.3, 867.4--321.8 or 1 028.4-- 328.3 K after ignition of 200 ma of methane-air mixture. After the explosion the temperature drops rapidly at first and then slowly decreases to the normal temperature of the lane-way air. The maximum temperatures are higher when the concentration and volume of the methane is higher. At the same time the difference in temperature becomes greater, too.
出处
《中国矿业大学学报》
EI
CAS
CSCD
北大核心
2010年第3期318-323,共6页
Journal of China University of Mining & Technology
基金
国家十一五科技支持计划项目(2006BAK03B05)
国家自然科学基金项目(50534090)
煤炭资源与安全开采国家重点实验室自主课题(SKLCRSM08B12)
河南省煤矿瓦斯与火灾防治重点实验室开放基金项目(HKLGF200903)
关键词
矿井
巷道
瓦斯爆炸
温度
分布
mine
laneway
methane explosions
temperature
distribution