期刊文献+

矿井瓦斯爆炸后巷道空气温度分布规律 被引量:11

Temperature Distribution in Lane-way Air After Mine Methane Explosions
原文传递
导出
摘要 结合气体爆炸动力学弱冲击波爆炸理论等知识,建立了爆炸后的超压、温度随距点火源距离变化的非线性计算公式,并把超压计算值和实验值进行了对比.结果表明:对于体积分数分别为5.0%,7.5%,9.5%的100m。瓦斯爆炸后的巷道内大气温度变化范围分别是:582.5~309.7,709.2~315.2,825.0~320.0K;对于体积分数分别为5.0%,7.5%,9.5%的200ITI。瓦斯爆炸后的巷道内大气温度变化范围分别是:688.3~314.3,867.4~321.8,1028.4~328.3K.爆炸后的温度随着距离的增加先迅速递减后平缓降低到矿井正常空气温度,随着爆源的体积分数、体积的增加所产生的最高温度越高,温度变化范围越大. Gas explosion dynamics and weak explosion theory were used to study the overpres- sure and temperature after an explosion as a function of distance from the fire source. The o- verpressure values were compared to experimental results. The ignition of 100 ma of methane in air (5%, 7.50/oo or 9.5% methane) results in a temperature change of 582.5--309.7, 709.2 --a15.2 or 825.0--320.0 K. The changes were 688.3--314.3, 867.4--321.8 or 1 028.4-- 328.3 K after ignition of 200 ma of methane-air mixture. After the explosion the temperature drops rapidly at first and then slowly decreases to the normal temperature of the lane-way air. The maximum temperatures are higher when the concentration and volume of the methane is higher. At the same time the difference in temperature becomes greater, too.
出处 《中国矿业大学学报》 EI CAS CSCD 北大核心 2010年第3期318-323,共6页 Journal of China University of Mining & Technology
基金 国家十一五科技支持计划项目(2006BAK03B05) 国家自然科学基金项目(50534090) 煤炭资源与安全开采国家重点实验室自主课题(SKLCRSM08B12) 河南省煤矿瓦斯与火灾防治重点实验室开放基金项目(HKLGF200903)
关键词 矿井 巷道 瓦斯爆炸 温度 分布 mine laneway methane explosions temperature distribution
  • 相关文献

参考文献7

二级参考文献36

  • 1余为,缪协兴,茅献彪,许家林.岩石撞击过程中的升温机理分析[J].岩石力学与工程学报,2005,24(9):1535-1538. 被引量:21
  • 2吴育华,吴立新,钟声,张玲.岩石撞击引发矿井瓦斯爆炸可能性的实验探索[J].煤炭学报,2005,30(3):278-282. 被引量:11
  • 3林柏泉,翟成.煤炭开采过程中诱发的瓦斯爆炸机理及预防措施[J].采矿与安全工程学报,2006,23(1):19-23. 被引量:31
  • 4何满潮,胡江春,王红芳.岩石表面形态的各向异性及其摩擦特性研究[J].采矿与安全工程学报,2006,23(2):151-154. 被引量:6
  • 5吴兵.矿井瓦斯防治,全国煤矿安全培训统编教材[M].徐州:中国矿业大学出版社,2002..
  • 6谢多夫.力学中的相似方法与量纲理论[M].北京:科学出版社,1982.217-224.
  • 7MASRI A R, IBRAHIM S S, NEHZAT N, et al. Experimental study of premixed flame propagation over various solid obstructions [ J]. Experimental Thermal and Fluid Science,2000, 21(1): 109-116.
  • 8BAGABIR A, DRIKAKIS D. Shock-wave induced instability in internal explosion dynamics[J]. Aeronautical Journal, 2005, 109(1101): 537-553.
  • 9LIPANOV A M, ALIEV A V, BODNAR T A, et al. Flame propagation in a closed deformable channel. Combustion[J]. Explosion and Shock Waves, 1990, 26(3): 273-279.
  • 10WANG Cong-yin, HE Xue-qiu, YANG Yi. Experimental study of pressure generated by gas explosion [J]. Progress in Safety Science and Technology, 2004, 4(A) : 1618-1621.

共引文献188

同被引文献128

引证文献11

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部