期刊文献+

基于可调频亥姆霍兹共振器的封闭空间噪声自适应半主动控制 被引量:14

Adaptive semi-active noise control in enclosure using self-tuning Helmholtz resonators
下载PDF
导出
摘要 针对实际中声场激励频率可能发生变化的情况,研究采用自适应频率可调的亥姆霍兹共振器吸声器来跟踪激扰频率从而控制封闭空间噪声。建立了封闭声腔与亥姆霍兹共振器耦合的频域模型与时域控制模型,并给出了三种频率调谐控制算法,即亥姆霍兹共振器开口处声压幅值最小和内部声压幅值最大,以及判断内部声压幅值和开口处声压幅值的点积值趋零(点积值法)。理论分析和数值计算结果表明点积值法调频效果明显优于其它两种算法。采用并设计一种颈部面积可调的可调频亥姆霍兹共振器,利用点积值调频算法进行了单频和带宽信号激励下封闭空间噪声控制仿真和单频激励下实验研究,结果表明:点积值调频算法具有较好的频率调节性能和调节精度,并取得了理想的噪声控制效果,验证了理论模型正确性及调频算法的有效性。 The self-tuning Helmholtz resonator is studied in order to control the noise in the enclosure. According to modal superposition theory, the frequency-domain model and time-domain control model of enclosure-Helmholtz resonators (H.R.) are established. Three frequency tuning algorithms are adopted, that is, minimization of the sound pressures outside the H.R. throat, maximization of the sound pressure inside the H.R. cavity, and judgement of the dot-product of the sound pressures outside the H.R. throat and inside the H.R cavity called as dot-product method. Theoretical analysis and numerical results show that the dot-product method is superior to the others. A Helmholtz resonator whose neck is tunable is designed. The numerical simulations and experiments of noise control using the designed Helmholtz resonator and dot product tuning method are conducted. The results demonstrate good noise control effect and frequency tuning accuracy.
出处 《声学学报》 EI CSCD 北大核心 2010年第3期309-320,共12页 Acta Acustica
基金 高等学校博士学科点专项科研基金(200802171009) 黑龙江省自然科学基金(E200944) 哈尔滨市科技创新人才研究专项资金(2009RFQXG211) 哈尔滨工程大学基础研究基金(HEUFT08003)资助项目
关键词 亥姆霍兹 半主动控制 空间噪声 可调频 共振器 自适应 封闭 激励频率 Active noise control Computer simulation Enclosures Helmholtz equation Numerical analysis Optimization Resonators Tuning Ultrasonics
  • 相关文献

参考文献20

  • 1Everest F A.The master handbook of acoustics.The McGraw-Hill companies,2001:215-220.
  • 2Ingard U.On the theory and design of acoustical resonators.Journal of the Acoustical Society of America,1953; 25:1037-1061.
  • 3Lambert R F.A study of the factors influencing the damping of an acoustical cavity resonator.Journal of the Acoustical Society of America,1953; 25:1068-1083.
  • 4Alster M.Improved calculation of resonant frequencies of Helmholtz resonators.Journal of Sound and Vibration,1972; 24(1):63-85.
  • 5Chanaud R C.Effect of geometry on the resonance frequency of Helmholtz resonators.Journal of Sound and Vibration,1997; 204(5):829-834.
  • 6Selamet A,Dickey N S.Theoretical,computational and experimental investigation of Helmholtz resonators with fixed volume:lumped versus distributed analysis.Journal of Sound and Vibration,1996; 187(2):358-367.
  • 7Selamet A,Ji Z L.Circular asymmetric Helmholtz resonators.Journal of the Acoustical Society of America,2000; 107(5):2360-2369.
  • 8Fahy F J,Schofield C.A note on the interaction between a Helmholtz resonator and an acoustic mode of an enclosure.Journal of Sound and Vibration,1980; 72(3):365-378.
  • 9Cummings A.The effects of a resonator array on the sound field in a cavity.Journal of Sound and Vibration,1992; 154(1):25-44.
  • 10Hiroshi Matsuhisa,Baosheng Ren,Susumu Sato.Semiactive control of duct noise by a volume-variable resonator.JSME International Journal,1992; 35(2):223-228.

二级参考文献13

  • 1邱小军,沙家正.低频无规入射声场通过矩形板入射到闭空间的隔声量──Ⅰ.理论部分[J].声学学报,1995,20(3):174-182. 被引量:9
  • 2张军,兆文忠,谢素明,张维英.结构-声场耦合系统声压响应优化设计研究[J].振动工程学报,2005,18(4):519-523. 被引量:15
  • 3Fuller C R. Optimal placement of piezoelectric actuatorsand polyvinylidence fluoride error sensors in active structural acoustic control approach. J. Acoust. Soc. Am.,1992; 92(3): 1521-1533.
  • 4Nelson P A, Elliott S J. Active control of sound. London:Academic Press, 1992.
  • 5Pan Jie, Hansen C H, Bies D A. Active control of noisetransmission through a panel into a cavity I: Analyticalstudy. J. Acoust. Soc. Am., 1990; 87(5): 2098-2108.
  • 6Snyder S D, Hansen C H. The design of systems to controlactively periodic sound transmission into enclosed spaces,Part I: Analytical models. Journal of Sound and Vibration, 1994; 170(4): 433-449.
  • 7Dowell E H, Gorman G F. Acoustoelasticity: general theory, acoustic modes and forced response to sinusoidal excitation, including comparisons with experiment. Journalof Sound and Vibration, 1977; 52:519-542.
  • 8Pan Jie, Bies D A. The effect of fluid-structural coupling on sound waves in an enclosure--theoretical part. J.Acoust. Soc. Am., 1990; 87(2): 691-707.
  • 9Kim S M. Brennan M J. A compact matrix formulationusing the impedance and mobility approach for the analysis of structural acoustic systems. Journal of Sound andVibration, 1999; 223(1): 97-113.
  • 10Frank Fahy. Sound and structural vibration: radiation,transmission and response. London: Academic Press,1985.

共引文献30

同被引文献82

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部