期刊文献+

基于光谱分析和SVM的综合传动故障诊断研究 被引量:3

Study on Fault Diagnosis of Power-Shift Steering Transmission Based on Spectrometric Analysis and SVM
下载PDF
导出
摘要 油液光谱分析是研究综合传动运行状态的重要方法,文章以油液光谱分析数据为基础,运用支持向量机(support vector machine,SVM),建立了一种多输出最小二乘支持向量回归方法。利用多输出最小二乘支持向量回归方法对两台综合传动光谱油液分析数据进行了研究分析。研究表明,此方法得到的回归数据对1号综合传动试验数据具有良好的逼近效果,对2号综合传动油液光谱分析数据的预测具有较高的准确性。通过与2号综合传动试验数据的对比分析,发现了故障信息,并确定了故障部位。试验结果表明,该方法对于发现故障隐患,判断故障部位具有重要实际意义。 Spectrometric oil analysis is an important method to study the running state of Power-Shift Steering Transmission (PSST).A method of multiple out least squares support vector regression was developed using spectrometric oil analysis data and SVM(Support Vector Machine).The spectrometric oil analysis data were studied using multiple out least squares support vector regression.It has been proved that the regression data are good in approximation effect for No.1 PSST.And the predictive values for No.2 PSST are highly veracious with the test data.The fault information was found and the fault position was determined through comparative analysis.This method has been proved to have practice significance for finding fault-hidden dangers and judging fault positions.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第6期1586-1590,共5页 Spectroscopy and Spectral Analysis
基金 国防"十一五"预先研究项目(62301030303) 高等学校学科创新引智计划项目(B08043) 总装"十一五"预研项目(40402020102)资助
关键词 光谱分析 支持向量机 综合传动 故障诊断 Spectrometric analysis SVM Power-shift steering transmission (PSST) Fault diagnosis
  • 相关文献

参考文献7

二级参考文献40

共引文献399

同被引文献38

  • 1邢杰,萧德云.FALCON模糊神经网络及其在铝电解槽阳极效应预报中的应用[J].冶金自动化,2004,28(z1):698-701. 被引量:1
  • 2马少华,龙硕,龙春宏.带惯性权重的粒子群PID控制在变风量空调中的应用[J].沈阳建筑大学学报(自然科学版),2011,27(3):608-612. 被引量:10
  • 3陈远望.美国铝电解槽技术革新新进展[J].世界有色金属,2004,29(9):50-51. 被引量:4
  • 4PAN S J, YANG Q. A survey on transfer learning [ J]. IEEE Trans- actions on Knowledge and Data Engineering, 2010, 22(10) : 1345 - 1359.
  • 5QUAN Z B, HUAN J. Large margin transductive transfer learning [ C] // Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York: ACM Press, 2009: 1327 - 1336.
  • 6SHI Y, LAN Z Z, LIU W, et al. Extending semi-supervised learn- ing methods for inductive transfer learning [ C]//Proceedings of the 9th IEEE International Conference on Data Mining. Washington, DC: IEEE Computer Society, 2009:483 -492.
  • 7PAN S J, TANG I W, KWOK J T, et al. Domain adaption via transfer component analysis [ J]. IEEE Transactions on Neural Net- works, 2011, 22(2): 199-210.
  • 8TAO J W, CHUNG F L, WANG S T. On minimum distribution dis-crepancy support vector machine for domain adaptation [ J]. Pattern Recognition, 2012, 45(11): 3962-3984.
  • 9DUAN L X, TSANG I W, XU D. Domain transfer multiple kernel learning [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(3): 465-479.
  • 10BRUZZONE L, MARCONCINI M. Domain adaptation problems: a DASVM classification technique and a circular validation strategy [ J]. IEEE Transactions on Pattern Analysis and Machine Intelli- gence, 2010, 32(5): 770-787.

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部