期刊文献+

微机械陀螺信号虚拟野值降噪方法 被引量:5

De-noising method of micro-machined gyroscope signal based on virtual outliers in wavelet coefficients
下载PDF
导出
摘要 本文提出了一种建立在信号小波函数虚拟野值思想上的微机械(MEMS)陀螺信号降噪方法。同时针对微机械陀螺信号中含有野值的问题,设计了一维信号小波函数线性压缩的野值剔除方法。首先,本文提出了对信号小波函数模极大值邻域进行线性压缩的信号野值剔除方法,有效地改善了重构时野值点附近信号的震荡问题。然后,提出了信号小波函数虚拟野值降噪方法,利用野值剔除思想设计小波函数降噪阈值,重构信号获得了比通用阈值降噪方法更好的信噪比,实现了信号的平滑和增强。最后,针对船用测量的应用背景对滤波后的信号进行了分析和对比,并给出实现在线滤波的条件。结果显示,陀螺信号零偏稳定性获得提高,同时滤波后信号能够满足系统测量带宽要求。 In this paper a micro-mechanical (MEMS) gyroscope signal de-noising method based on virtual outliers is presented. Aiming at the gyroscope signal with outliers, a method of eliminating outliers is presented based on detecting the modulus maxima and linear compressing. This method effectively improves the reconstruction quality. The method of calculating the de-noising threshold using virtual outliers is presented. The SNR for this method is better than that using universal threshold. Finally, for the applications of marine measurement, the filtered signals are analyzed and compared, and the condition of online filtering is presented. Results show that the zero offset stability of the gyro signal is improved, and the filtered signals meet the system measurement bandwidth requirement.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2010年第5期1194-1200,共7页 Chinese Journal of Scientific Instrument
关键词 MEMS信号滤波 小波降噪 野值剔除 虚拟野值 MEMS signal filtering wavelet de-noising linear removal of outlier virtual outlier
  • 引文网络
  • 相关文献

参考文献15

  • 1李肃义,林君.一种综合小波变换的心电信号消噪算法[J].仪器仪表学报,2009,30(4):689-693. 被引量:31
  • 2周知进,文泽军,卜英勇.小波降噪在超声回波信号处理中的应用[J].仪器仪表学报,2009,30(2):237-241. 被引量:67
  • 3黄姣英,袁海文,何怡刚.连续小波变换的对数模拟滤波器实现[J].电子测量与仪器学报,2009,23(6):52-56. 被引量:5
  • 4刘力,周建中,李英海,张勇传.基于小波消噪的混沌径流预测模型[J].华中科技大学学报(自然科学版),2009,37(7):86-89. 被引量:7
  • 5FERGUSON B, ABBOTT D. De-noising techniques for terahertz responses of biological samples [ J].Microelectronics Journal, 32(2001 ) :943-953.
  • 6BAILI J, LAHOUAR S, HERGLI M, et al. GPR signal de-noising by discrete wavelet transform [ J ]. NDT & E International, 2009, (42) :696-703.
  • 7BRUNI V, VITULANO D. Wavelet -based signal de-noising via simple singularities approximation [ J ]. Signal Processing, 2006, (86) : 859-876.
  • 8SONG S P, QUE P W. Wavelet based noise suppression technique and its application to ultrasonic flaw detection [ J ]. Ultrasonics, 2006, (44) : 188- 193.
  • 9RIZZO P, SORRIVI E, DI SCALEA F L, et al. Wavelet-based outlier analysis for guided wave structural monitoring: Application to multi-wire strands [ J ]. Journal of Sound and Vibration, 2007, (307) :52-68.
  • 10LI X L, LI J, YAO X. A wavelet-based data pre-processing analysis approach in mass spectrometry [ J ]. Computers in Biology and Medicine, 2007, (37): 509-516.

二级参考文献35

共引文献119

同被引文献70

引证文献5

二级引证文献47

;
使用帮助 返回顶部