期刊文献+

一种改进的双链量子遗传算法及其应用 被引量:20

Improved quantum genetic algorithm with double chains and its application
下载PDF
导出
摘要 针对目前双链量子遗传算法中保持种群多样性和改善优化效率问题提出了三种改进方法。通过在量子比特概率幅三角函数表达式中引入常数因子,使搜索过程在多个周期上同时进行,以改善算法的优化效率;提出了一种基于单比特量子Hadamard的变异策略,可提高保持种群多样性的概率;改进了量子旋转门转角步长函数,能够有效避免算法震荡,增强算法的适应性。以多变量函数极值优化问题为例,仿真实验结果表明上述三种改进措施是有效的。 Aiming at the problems that how to keep population diversity and improve optimization efficiency in double chains quantum genetic algorithm, this paper proposed three improvements. Firstly, by adding the constant factor to the trigonometric expressions of quantum bit probability amplitudes, performed the search in a number of trigonometric functions cycle at the same time, which enhanced the optimization efficiency of the proposed algorithm. Secondly, the mutation strategy applying the single bit quantum Hadamard gates enhanced the diversity of population. Thirdly, enhanced the adaptability of the proposed algorithm by redesigning the step function of rotation angle of quantum rotation gates, and this also avoided the oscillation effectively. Finally, with application of function extremum optimization with multi-variables, the simulation results show that the three improvements are efficient.
出处 《计算机应用研究》 CSCD 北大核心 2010年第6期2090-2092,共3页 Application Research of Computers
基金 黑龙江省教育厅科学技术研究项目(11521013) 黑龙江省自然科学基金资助项目(ZA2006-11) 黑龙江省科技攻关项目(GZ07A103)
关键词 量子计算 量子遗传算法 优化算法 quantum computing quantum genetic algorithm(QGA) optimization algorithm
  • 相关文献

参考文献10

  • 1SHOR P W.Algorithms for quantum computation:discrete logarithms and factoring[C] //Proc of the 35th Annual Symposium on Foundations of Computer Science.Washingtom DC:IEEE Computer Society,1994:124-134.
  • 2GROVER L K.A fast quantum mechanical algorithm for database search[C] //Proc of the 28th Annual ACM Symposium on the Theory of Computing.New York:ACM Press,1996:212-219.
  • 3OGRYZKO V V.A quantum-theoretical approach to the phenomenon of directed mutations in bacteria (hypothesis)[J].Biosystems,1997,43(2):83-95.
  • 4HOGG T.A framework for structured quantum search[J].Physica D,1998,120(1-2):102-116.
  • 5LONG Gui-lu,LI Yan-song,LIN Wei,et al.Phase matching in quantum searching[J].Physics Letters A,1999,262(1):27-34.
  • 6NARAYANAN A,MOORE M.Quantum-inspired genetic algorithm[C] //Proc of IEEE International Conference on Evolutionary Computation.Piscataway:IEEE Press,1996:61-66.
  • 7HAN Kuk-hyun,PARK Kui-hong,LEE Chi-lee,et al.Parallel quantum-inspired genetic algorithm for combinatorial optimization problems[C] //Proc of IEEE Congress on Evolutionary Computation.Piscata-way:IEEE Press,2001:1442-1429.
  • 8YANG Jun-an,LI Bin,ZHUANG Zhen-quan.Multi-universe parallel quantum genetic algorithm its application to blind-source separation[C] //Proc of IEEE International Conference on Neural Networks & Signal Processing.2003:393-398.
  • 9WANG Ling,TANG Fang,WU Hao.Hybrid genetic algorithm based on quantum computing for numerical optimization and parameter estimation[J].Applied Mathematics and Computation,2005,171(2):1141-1156.
  • 10李士勇,李盼池.基于实数编码和目标函数梯度的量子遗传算法[J].哈尔滨工业大学学报,2006,38(8):1216-1218. 被引量:60

二级参考文献7

  • 1HIRAFUJI M,HAGAN S.A global optimization algorithm based on the process of evolution in complex biological system[J].Computers and Electronics in Agriculture,2000,29:125-134.
  • 2GRIGORENKO I,GARCIA M E.Calculation of the partition function using quantum genetic algorithms[J].Physica A,2002,313:463-470.
  • 3RAMOS R V.Numerical algorithms for use in quantum information[J].Journal of Computational Physics,2003,192:95-104.
  • 4SAHIN M,TOMAK M.The self-consistent calculation of a spherical quantum dot A quantum genetic algorithm study[J].Physica E,2005,28:247-256.
  • 5何新贵,梁久祯.利用目标函数梯度的遗传算法[J].软件学报,2001,12(7):981-985. 被引量:31
  • 6张葛祥,李娜,金炜东,胡来招.一种新量子遗传算法及其应用[J].电子学报,2004,32(3):476-479. 被引量:122
  • 7杨俊安,庄镇泉,史亮.多宇宙并行量子遗传算法[J].电子学报,2004,32(6):923-928. 被引量:65

共引文献59

同被引文献158

引证文献20

二级引证文献113

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部