期刊文献+

基于FCM算法的小脑基因模糊聚类分析 被引量:2

On the Fuzzy Clustering of the Cerebellar gene Based on FCM Algorithm
原文传递
导出
摘要 探讨基因表达数据的聚类分析方法,结合一种聚类结果的评判准则,应用于胎儿小脑基因表达数据,得到了最优的聚类结果,并做出了生物学解释.利用Matlab软件进行了仿真,利用模糊聚类Xie-Beni指数得到了最优聚类数,并把每一类对应的基因标号输出到txt文件,最后进行生物学解释.得到的小脑基因最优聚类数为3类,与生物学意义比较吻合,各类中的基因功能接近.基于FCM算法的基因模糊聚类是有效的,结果具有一定生物学意义,能对生物学基因聚类有一定指导作用. To explore gene expression data of the cluster analysis method, combined with the results of a cluster evaluation criterion applied to fetal cerebellar gene expression data, have been the best clustering results, and made the biological interpretation. The use of Matlab software simulation, the use of fuzzy clustering Xie-Beni index has been the optimal cluster number, and the corresponding gene in each category label output to txt file, and finally to carry out the biological interpretation. To be the best of cerebellar gene cluster for the 3 categories, and comparison with biological significance, various types of gene function in the close. FCM algorithm based on fuzzy clustering of the gene to be effective, the results of a certain biological significance of gene clustering on the biological role of some guidance.
出处 《数学的实践与认识》 CSCD 北大核心 2010年第12期74-79,共6页 Mathematics in Practice and Theory
基金 河北省教育科学研究"十一五"规划课题(06020545)
关键词 FCM算法 基因表达 聚类分析 Xie—Beni指数 FCM algorithm gene expression clustering xie-beni index
  • 相关文献

参考文献11

二级参考文献144

  • 1李侃,刘玉树.模糊核聚类的自适应算法[J].控制与决策,2004,19(5):595-597. 被引量:9
  • 2郑岩,黄荣怀,战晓苏,周春光.基于遗传算法的动态模糊聚类[J].北京邮电大学学报,2005,28(1):75-78. 被引量:22
  • 3高新波 姬红兵.一种基于特征加权的模糊均值聚类算法[J].西安电子科技大学学报,2000,27:80-83.
  • 4Hoppner F, Klawonn F, Kruse R, et al. Fuzzy Cluster Analysis: Methods for Classification, Data Analysis and Image Recognition [M]. New York: John Wiley & Sons, 1999: 17-20.
  • 5Petty C C, League M R. A Theoretical Investigation of a Parallel Genetic Algorithm [ C ]//Proceedings of 3rd Int Conference on Genetic Algorithms. San Francisco: Morgan Kaufmann, 1989: 398405.
  • 6LUO Wen-jian, CAO Xian-bin, WANG Xu-fa. An Immune Genetic Algorithm Based on Immune Regulation [ C]// Proceedings of the 2002 Congress on Evolutionary Computation. Honolulu: IEEE Xplore, 2002: 801-806.
  • 7WANG Han, ZHOU Chun-guang, ZHENG Ming, et al. Measuring the Similarity of Co-regulated Genes by Integrating Quantity and Tendency of Gene Expression Changing [ C ]//The 2nd International Conference on Bioinformatics and Biomedical Engineering. Shanghai: IEEE Xplore, 2008: 1896-1900.
  • 8Eisen M, De Hoon M. Cluster 3.0 Manual for Windows, Mac OS X, Linux, Unix [ EB/OL]. 2002-05. http ://bonsai. ims. u-tokyo, ac. jp/-mdehoon/software/cluster/cluster3, pdf.
  • 9Spellman P T, Sherlock G, Zhang M Q, et al. Comprehensive Identification of Cell Cycle-regulated Genes of the Yeast Saccharomyces Cerevisiae by Microarray Hybridization [ J ]. Molecular Biology of the Cell, 1998, 9 (12) : 3273-3297.
  • 10Spellman P T, Sherlock G, Zhang M Q, et al. The Tab Delimited Data for the Alpha Factor, Cdcl5, and E|utriation Time Courses of Yeast for 6000 Genes [ EB/OL]. [ 2008-03-18 ]. http ://genome-www. stanford, edu/cellcycle/data/ rawdata/combined, txt.

共引文献261

同被引文献10

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部