期刊文献+

基于HHT边际谱熵和能量谱熵的心率变异信号的分析方法 被引量:14

The Analysis Method of Heart Rate Variability Signal Based on the HHT Marginal Spectrum Entropy and Energy Spectrum Entropy
下载PDF
导出
摘要 基于希尔伯特-黄变换(HHT)理论,依据广义信息熵的概念,提出基于HHT边际谱熵和能量谱熵的概念和熵分析方法。对常规信号和混沌时间序列信号进行复杂性研究,结果表明本方法在刻画信号复杂度变化、抗脉冲干扰方面优于Lempel-Ziv复杂度和功率谱熵方法。将其应用于MIT-BIH标准数据库的实际心率变异(HRV)信号分析,结果显示HHT边际谱熵和能量谱熵能从HRV信号中敏感地检测出生理和病理状态的变化,统计学分析优于传统的功率谱熵方法,为临床HRV信号及其他复杂生理信号的分析提供一种有效的分析方法。 According to the concept of generalized information entropy and Hilbert-Huang transform( HHT) theory,the analysis method of heart rate variability signal was proposed based on the HHT marginal spectrum entropy and energy spectrum entropy.The complexity analysis was processed for the conventional signal and chaotic time series.The results showed that the method was superior to the method of the Lempel-Ziv complexity and the power spectrum entropy in depicting signal complexity and anti-pulse interference.Applying the new approach to actual heart rate variability signal(HRV) of the MIT-BIH standard database,it was demonstrated that this method could detect the physiological and pathological changes in HRV better than the traditional power spectrum entropy method,providing an effective analysis method for clinical HRV signal and other complex physiological signal.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2010年第3期336-344,共9页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金资助项目(30670529)
关键词 心率变异性(HRV) 希尔伯特-黄变换(HHT) 熵和复杂性 heart rate variability (HRV) Hilbert-Huang transform (HHT) entropy and complexity
  • 相关文献

参考文献24

  • 1Clifford GD, Azuaje F, McSharry PE. Advanced methods and tools for ECG data analysis[ M]. London: Artech House,2006.
  • 2Malik M. Heart rate variability: standards of measurement, physiological interpretation and clinical use [J ]. Circulation, 1996, 93(5) :1043 - 1065.
  • 3Mietus JE, Peng CK, Henry I, et al. The pNNx files : re-examining a widely used heart rate variability measure [ J]. Heart, 2002, 88(4) : 378 -380.
  • 4Serrador JM, Finlayson HC, Hughson RL. Physical activity is a major contributor to the ultra low frequency components of heart rate variability[ J]. Heart, 1999, 82(e9) :547 - 555.
  • 5孙瑞龙,吴宁,杨世豪,陆再英,郭林妮,屈建石,黄永麟,戚文航,蒋文平.心率变异性检测临床应用的建议[J].中华心血管病杂志,1998,26(4):252-255. 被引量:807
  • 6Clifford GD, McSharry PE. Generating 24-hour EGG, BP and respiratory signals with realistic linear and nonlinear clinical characteristics using a nonlinear model [ J ]. Computers in Cardiology, 2004,31:709 - 712.
  • 7Bogaert C, Beckers F, Ramaekers D, et at. Analysis of heart rate variability with correlation dimension method in a normal population and in heart transplant patients [ J J. Autonomic Neuroscience, 2001, 90( 1 ) : 142 - 147.
  • 8Bian CH, Ning XB. Evaluating age-related loss of nonlinearity degree in short-term heartbeat series by optimum modeling dimension [ J ]. Physica A: Statistical Mechanics and its Applications, 2004, 337 ( 1-2 ) : 149 - 153.
  • 9Ivanov PC, Amaral LAN, Goldberger AL, et al. Multifraetality in human heartbeat dynamics[Jl. Nature, 1999, 399(3): 461 - 465.
  • 10李锦,宁新宝.短时心率变异性信号的基本尺度熵分析[J].科学通报,2005,50(14):1438-1441. 被引量:24

二级参考文献72

共引文献1039

同被引文献128

引证文献14

二级引证文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部