期刊文献+

二维声子晶体微腔能带结构的有限元分析与设计 被引量:20

Finite Element Analysis and Design of Band Structures for Two-dimensional Phononic Crystals Microcavity
下载PDF
导出
摘要 本文基于ABAQUS建立了二维声子晶体体波能带结构的有限元计算方法。该方法首先利用周期性边界条件和Bloch定理,将周期结构的有限元离散特征方程化归到一个周期单胞内的复系数特征方程,然后将其分为实部和虚部两组方程,并在周期单胞边界上应用Bloch定理,求解得到的实数特征方程,获得频散曲线。与已有计算方法相比,该方法在适用性、计算速度、精确度和收敛性等方面具有明显的优越性。在此基础上使用发展的有限元方法分析研究了不同形状的声子晶体微腔的能带结构特性。结果表明这些晶体结构对于特定频率的声波可以将其限制在声子晶体微腔内,在一定环境下有着较好的吸声降噪功能。 This paper presents a calculation method based on the ABAQUS for band structures two-dimensional (2D) phononic crystals.An eigenvalue equation with complex coefficients for a unit cell is derived from the eigenvalue equation of the discretization form for the whole periodic structure by considering the periodic boundary conditions and Bloch theory.Then,the above equation is divided into two sets with real coefficients.And the Bloch conditions are imposed on the edge nodes of the unit cell.Therefore,the obtained eigenvalue problem can be solved to yield the dispersion relations.It is shown that the developed method has advantages over other methods in flexibility,calculation speed,accuracy and convergence.The band structures of 2D phononic crystals with microcavities of different shapes are analyzed by using the developed method.The results show that elastic waves with particular frequencies can be confined in the phononic crystal resonant cavity.These structures have a better sound absorption and acoustic noise reduction in certain circumstances.
出处 《人工晶体学报》 EI CAS CSCD 北大核心 2010年第3期649-655,664,共8页 Journal of Synthetic Crystals
基金 国家自然科学基金(No.10632020) 德国科研基金会(No:ZH15/10-1) 中德合作PPP科研项目(No.D/08/01795)
关键词 声子晶体 周期结构 微腔 能带结构 有限元法 phononic crystals periodic structure microcavity band structure finite element method
  • 相关文献

参考文献14

  • 1Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic Band-structure of Periodic Elastic Composites [ J ]. Physical Review Letters, 1993,71 ( 13 ) :2022-2025.
  • 2汪越胜.声带隙功能材料的科学问题及力学思考.固体力学若干新进展[A].第一届全国固体力学青年学者研讨会论文集[C].冯西桥等主编.北京:清华大学出版社,2006:323-342.
  • 3Chen A L, Wang Y S. Study on Band Gaps of Elastic Waves Propagating in One-dimensional Disordered Phononic Crystal[ J]. Physica B,2007, 392 ( 1-2 ) : 369 -378.
  • 4胡家光,张晋,敬守勇.二维嵌套复式结构声子晶体的带隙研究[J].人工晶体学报,2009,38(5):1160-1164. 被引量:5
  • 5Kafesaki M, Economou E N. Multiple-scattering Theory for Three-dimensional Periodic Acoustic Composites[ J]. Physical Review B, 1999,60 (17) :11993-12001.
  • 6苏晓星,汪越胜.用FDTD与高分辨率谱估计相结合计算二维声子晶体的能带[J].人工晶体学报,2009,38(6):1375-1379. 被引量:4
  • 7Yan Z Z, Wang Y S. Wavelet-based Method for Calculating Elastic Band Gaps of Two-dimensional Phononic Crystals [ J ]. Physical Review B, 2006,74:22430322.
  • 8Wang G, Wen J H, Liu Y Z, et al. Lumped-mass Method for the Study of Band Structure in Two-dimensional Phononic Crystals[ J]. Physical Review B,2004,69 : 18430218.
  • 9Khelif A, Aoubiza B, Mohammadi S, et al. Complete Band Gaps in Two-dimensional Phononic Crystal Slabs [ J ]. Physical Review E,2006,74: 0466104.
  • 10Mead D J. A General Theory of Harmonic Wave Propagation in Linear Periodic Systems with Multiple Coupling [ J ]. Journal of Sound and Vibration, 1973,27 ( 2 ) : 235 -260.

二级参考文献19

  • 1赵芳,苑立波.二维复式格子声子晶体带隙结构特性[J].物理学报,2005,54(10):4511-4516. 被引量:17
  • 2张荣英,姜根山,王璋奇,吕亚东.声子晶体的研究进展及应用前景[J].声学技术,2006,25(1):35-42. 被引量:34
  • 3李晓春,梁宏宇,易秀英,肖清武,赵保星.二维组合宽带隙材料的研究[J].物理学报,2007,56(5):2784-2789. 被引量:6
  • 4Sigalas M M, Economou E N. Elastic and Acoustic Wave Band Structure[ J ]. Journal of Sound and Vibration, 1992, 158(2) :377-382.
  • 5Kushwaha M S, Halevi P, Dobrzynski L, et al. Acoustic Band-structure of Periodic Elastic Composites[ J]. Phys. Rev. Lett. , 1993,71 (13) : 2022 -2025.
  • 6Liu Z Y, Zhang X X, Mao Y W, et al. Locally Resonant Sonic Materials[J]. Science, 2000, 289(5485) :1734-1736.
  • 7Kuang W M, Hou Z L, Liu Y Y. The Effects of Shapes and Symmetries of Scatterers On the Phononic Band Gap in 2D Phononic Crystals[ J]. Phys. Lett. A, 2004, 332(5-6) : 481490.
  • 8Li J, Liu Z Y, Qiu C Y. Negative Refraction Imaging of Solid Acoustic Waves by Two-dimensional Three Component Phononic Crystal [ J ]. Phys. Lett. A, 2008, 372(21) : 3861-3867.
  • 9Li X L, Wu F G, Hu H F, et al. Large Acoustic Band Gaps Created by Rotating Square Rods in Two Dimensional Periodic Composites[J]. J. Phys. D: Appl. Phys. , 2003, 36(1): L15-L17.
  • 10Zhong L H, Wu F G, Zhang X, et at. Effects of Orientation and Symmetry of Rods on the Complete Acoustic Band Gap in Two Dimensional Periodic Solid/Gas Systems[ J]. Phys. Lett. A, 2005, 339 (1-2) : 164-170.

共引文献7

同被引文献152

引证文献20

二级引证文献84

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部