期刊文献+

警示传播算法的原理分析及算法改进 被引量:3

Analysis and improvement of warning propagation algorithm
下载PDF
导出
摘要 详细分析了警示传播算法基本原理,给出了算法的收敛性分析及算法的改进。实验证明,改进后的算法比原算法具有更少的迭代次数和更少的运行时间,提高了收敛速度。警示传播算法的分析有助于理解和分析信念传播算法、调查传播算法的数学原理、以及传播算法的演化过程。 The detail analysis of basic principle of the warning propagation(WP) algorithm is presented,and the analysis of the convergence of the WP algorithm and the improvement of the algorithm are given.The experiment show that the improved algorithm has fewer iteration times,less program-running time and faster convergence speed than the original WP algorithm.The analysis is helpful for understanding and analysing the mathematical principle and generation process of BP and SP algorithms.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第19期1-6,54,共7页 Computer Engineering and Applications
基金 国家自然科学基金(No.60863005 No.61011130038) 贵州省省长基金(No.200404) 贵州大学自然科学青年基金(No.2009021)~~
关键词 信息传递 传播算法 原理分析 收敛性 可满足问题 message passing warning propagation analysis of principle convergence satisfiability problem
  • 相关文献

参考文献5

二级参考文献22

  • 1黄文奇,朱虹,许向阳,宋益民.求解方格packing问题的启发式算法[J].计算机学报,1993,16(11):829-836. 被引量:14
  • 2李未,黄文奇.一种求解合取范式可满足性问题的数学物理方法[J].中国科学(A辑),1994,24(11):1208-1217. 被引量:21
  • 3李未,中国科学.A,1994年,24卷,11期,1208页
  • 4Gu J,SIGART Bulletin,1992年,3卷,1期,8页
  • 5Gu J,1988年
  • 6黄文奇,国际离散数学与算法研讨会文集,1994年
  • 7李未,中国科学.A,1994年,25卷,1期,1208页
  • 8Gu J,Sigart Bull,1992年,3卷,1期,8页
  • 9黄文奇,应用数学学报,1979年,2期,176页
  • 10Velev M.N., Bryant R.E.. Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors. In: Proceedings of the 38th Design Automation Conference, Las Vegas, Nevada, 2001, 226~231

共引文献51

同被引文献57

  • 1李韶华,张健.Survey Propagation:一种求解SAT的高效算法[J].计算机科学,2005,32(1):132-137. 被引量:5
  • 2邵明,李光辉,李晓维.求解可满足问题的调查传播算法以及步长的影响规律[J].计算机学报,2005,28(5):849-855. 被引量:8
  • 3MANEVA E, MOSSEL E, WAINWRIGHT M. A new look at survey propagation and its generalizations [J].Journal of the ACM, 2007, 54(4):1089-1098.
  • 4BRAUNSTEIN A, MEZARD M, ZECCHINA R. Survey propagation: an algorithm for satisfiability [ J ]. Random Structures and Algorithms, 2005, 27(2): 201-226.
  • 5CHIEU H L, LEE W S. Relaxed survey propagation for the weighted maximum satisfiability problem[ J]. Journal of Artificial Intelligence Research, 2009, 36 ( 1 ) : 229- 266.
  • 6MONASSON R, ZECCHINA R, KIRKPATRICK S, et al. Determining computational complexity from characteristic ' phase transitions' [J].Nature, 1999, 400 ( 8 ) : 133-137.
  • 7CHEESEMAN P, KANEFSKY B, TAYLOR W M. Where the really hard problems are [ C ]//Proceedings of the 12th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1991 : 331-337.
  • 8FRIEZE A M, MOLLOY M. The satisfiability threshold for randomly generated binary constraint satisfaction problems [ J ]. Random Structures and Algorithms, 2006, 28(3): 323-339.
  • 9MEZARD M, PARISI G, ZECCHINA R. Analytic and algorithmic solution of random satisfiability problems [J]. Science, 2002, 297(5582): 812-815.
  • 10SLANEY J, WALSH T. Backbones in optimization and approximation [ C ]//Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2001: 254-259.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部