期刊文献+

基于PCA和粗糙集构建决策树的变电站故障诊断 被引量:8

Fault diagnosis of substation by the constructed decision tree based on principal component analysis(PCA) and rough set
下载PDF
导出
摘要 提出一种基于主元分析(PCA)和粗糙集理论结合继而构建决策树的故障诊断方法。该方法利用PCA对原始故障决策表的条件属性集进行降维处理,得到由主元变量构成的故障决策表,采用等频分割方法对这一决策表的数据离散化,进而采用基于主元属性重要度的粗糙集属性约简算法得到离散后的决策表的最小约简,以约简数据集为样本基于核属性采用一种改进的决策树算法训练学习,构建故障决策树进行诊断决策。测试实例证明了该方法能简化故障诊断系统,提取容错性较强的诊断规则,提高了故障的识别率。 A method for substation fault diagnosis based on principal component analysis(PCA) and rough set theory,then to constructed decision tree,is proposed.By this method,PCA is used to decrease the dimension of all the condition attributes of the original fault decision table and get fault decision table that consists of principle component variables.Then,an equal-frequency devision method is used to discrete the value of the above decision table.The next is that a rough attribute reduction based on the significance of principle component variables is applied to obtain a minimum reduction of the discrete decision table.Finally,based on the core attributes,an improved decision tree algorithm is used to train the reducted data set and construct a decision tree for the diagnosis.Test proved that this method can simplify the fault diagnosis system,extract the diagnosis rules of better fault tolerance and increase the fault recognition rate.
出处 《电力系统保护与控制》 EI CSCD 北大核心 2010年第14期104-109,共6页 Power System Protection and Control
关键词 主元分析 粗糙集 决策树 变电站 故障诊断 PCA rough set decision tree substation fault diagnosis
  • 相关文献

参考文献19

  • 1刘菁,解大,王丽芳.基于多知识库与粗糙集理论的变电站故障诊断方法[J].华东电力,2006,34(12):27-32. 被引量:3
  • 2JohnsonRA WichernDW(陆璇译).实用多元统计分析[M].北京:清华大学出版社,2001.347-379.
  • 3Pawlak Z.Rough sets[J].International Journal of Computer and Information Science,1982,11:341-356.
  • 4Quinlan J R.Induction of decision trees[J].Machine Learning,1986 (1):81-106.
  • 5David Antory,Uwe Kruger,Irwin G W,et al.Industrial process monitoring using nonlinear principal component models[C].//Second IEEE International Conference on Intelligent Systems.Kine:2004:293-298.
  • 6Choi Sang Wook,Lee Changkyu,Lee Jong-Min,et al.Fault detection and identification of nonlinear processes based on kernel PCA[J].Chemometrics and Intelligent Laboratory Systems,2005,75(1):55-67.
  • 7Choi Sang Wook,Lee In-Beum.Nonlinear dynamic process monitoring based on dynamic kernel PCA[J].Chemical Engineering Science,2004,59(24):5897-5908.
  • 8Thaddeus T Shannon,David Abercrombie,et al.Improved process monitoring with independent components[C].//IEEE/SEMI Advanced Semiconductor Manufacturing Conference.2004:170-175.
  • 9王加阳,谢颖.基于量子粒子群优化的最小属性约简算法[J].计算机工程,2009,35(12):148-150. 被引量:11
  • 10WANG Xiang-yang,YANG Jie,TENG Xiao-long.Feature selection based on rough sets and particle swarm optimization[J].Pattern Recognition Leters,2007,28(4):459-471.

二级参考文献75

共引文献109

同被引文献82

引证文献8

二级引证文献85

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部