期刊文献+

求解TSP问题的改进模拟退火遗传算法 被引量:32

Improved simulated annealing genetic algorithm for solving TSP problem
下载PDF
导出
摘要 巡回旅行商问题(TSP)是最典型的NP的难题,遗传算法(GA)是解决这类问题的有效方法之一。由于该问题的解是一种特殊的序列,一般的交叉算子在该问题的求解效果方面并不理想,提出了贪心的3PM交叉算子,同时又引入退火选择方法,形成一种新的模拟退火遗传算法GCBSAGA(Greed Cross-3PM Basedon Simulated Annealing Genetic Algorithms)。该算法还将模拟退火算法与遗传算法相结合,使得遗传算法在前期发挥着全局搜索的强大功能,很容易收敛到全局较优解;后期用模拟退火算法来处理遗传算法前期的全局较优解,充分利用模拟退火算法后期局部搜索的强大功能,最终收敛到全局最优解。经过国际公认的TSPLIB提供的实验数据的验证,GCBSAGA在实例eil76、eil101、pr144、st70均找到了比TSPLIB提供的最优路径更优的解。 The Traveling Salesman Problem(TSP) is a well-known NP complete problem,while the Genetic Algorithm(GA) is one of the ideal methods in solving it.Because the problem is a special sequence,the general cross-operator in the problem solving effect is not ideal.The greedy cross-3PM operator is proposed,while the annealing selection method is introduced,and a new simulated annealing genetic algorithm GCBSAGA(Greed Cross-3PM Based on Simulated Annealing Genetic Algorithms) is formed.The algorithm combines simulated annealing and genetic algorithm together,making genetic algorithm in the early stage play a powerful global search function.It is easy to converge to the global optimum solution;In the later stage,the simulated annealing genetic algorithms are used to deal with the overall situation of pre-optimum solution.And it makes full use of simulated annealing's latter part of the power of local search and eventually converges to the global optimal solution.After the experimental data verification provided by the internationally recognized TSPLIB,GCBSABA in the case eil76,eil101,pr144,st70 are found to provide better optimal path solution than TSPLIB.
出处 《计算机工程与应用》 CSCD 北大核心 2010年第5期44-47,85,共5页 Computer Engineering and Applications
关键词 巡回旅行商问题 遗传算法 模拟退火算法 贪心交叉算子 退火选择 Traveling Salesman Problem(TSP) genetic algorithms simulated annealing greed cross-operator annealing choice
  • 相关文献

参考文献4

二级参考文献25

  • 1周杰,李军,杨特芝,袁灿伦,汤文兵,李明友.矩形件套裁人工智能优化排样[J].锻压技术,1995,20(4):19-22. 被引量:2
  • 2曹炬,周济.矩形件排样优化的一种近似算法[J].计算机辅助设计与图形学学报,1995,7(3):190-195. 被引量:56
  • 3刑文训.现代优化计算方法[M].北京:清华大学出版社,1999..
  • 4康立山 谢云 等.非数值并行算法(第1册)[M].北京:科学出版社,1997..
  • 5Jiang Rui,Proc Conference on Intelligent Information Processing(WCC 2000 IIP 2000),2000年,478页
  • 6Wu Qinghong,计算机研究与发展,1999年,36卷,10期,1240页
  • 7康立山,非数值并行算法.1 模拟退火算法,1997年
  • 8BONNEVILLE F,PERRARD C,HENRIOUD J M.A genetic algorithm to generate and evaluate assembly plans[A].IEEE Symposium on Emerging Technology and Factory Automation[C].Piscatway,N.J.,USA:IEEE Press,1995.231-239.
  • 9DINI G,FAILLI F.Generation of optimized assembly sequences using genetic algorithms[A].Annals of the CIRP[C].Berne,Switzerland:CIRP Publishers,1999.17-20.
  • 10LAZZERINI B,MARCELLONI F.A genetic algorithm for generation optimal assembly plans[J].Artificial Intelligence in Engineering,2000,14 (4):319-329.

共引文献308

同被引文献289

引证文献32

二级引证文献256

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部