期刊文献+

橡胶衬套力学特性半经验参数化模型 被引量:14

Semi-Empirical Parameterized Dynamic Model of Rubber Bushing Mechanical Properties
下载PDF
导出
摘要 综合考虑模型复杂程度、预测精度以及参数识别工作量因素,合理选择橡胶弹性元件半经验模型是进行整车底盘系统动力学仿真分析重要的基础性课题。针对目前应用的Kelvin-Voigt模型、三参数Maxwell模型、BERG模型和DZIERZEK模型进行模型结构特征、参数识别方法与特性预测精度的对比分析。在此基础上,综合说明四种模型的特点与适用场合。研究表明:Kelvin-Voigt模型与三参数Maxwell模型结构简单,参数识别容易,但仿真误差较大,可用于定性计算;BERG模型的摩擦单元能够实现振幅影响的分析,精度明显提高,参数识别工况适中。DZIERZEK模型同时包含弹性元件与摩擦元件,仿真精度最高,但因模型复杂需要大量参数识别试验。BERG模型和DZIERZEK模型都适用于定量仿真分析。 It is a primary topic to choose suitable rubber bushing model for vehicle chassis system dynamics simulation and analysis,taking the model complexity,prediction accuracy and identification difficulty into consideration.In this paper,four semi-empirical dynamic models for rubber bushing,including linear Kelvin-Voigt model and three-parameter Maxwell model,nonlinear BERG model and DZIERZEK model,are investigated in respect of model characterization,parameter identification approach and prediction accuracy.Based on the comparisons,the characteristics and application of each model are described.It is found that the Kelvin-Voigt model and three parameters Maxwell model are simple and easy to get model parameters,but they have a low precision and only can be used for qualitative analysis.The BERG model can simulate the amplitude effect by introducing a friction element,and it has obviously improved accuracy while requiring appropriate identification experiments.The DZIERZEK model consists of both non-linear elastic spring and friction element which can describe nonlinear viscoelastic behavior with amplitude dependency.It has the best precision but needs much more identification tests due to complex model form.Both BERG model and DZIERZEK model are suitable for quantitative simulation analysis。
出处 《机械工程学报》 EI CAS CSCD 北大核心 2010年第14期115-123,共9页 Journal of Mechanical Engineering
关键词 橡胶衬套 半经验参数化模型 预测精度 参数识别 Rubber bushing Semi-empirical parameterized model Prediction precision Parameter identification
  • 相关文献

参考文献9

  • 1GIL-NEGRETE N,VINOLAS J,KARI L.A simplified methodology to predict the dynamic stiffness of carbon-black filled rubber isolators using a finite element code[J].Journal of Sound and Vibration,2006(296):757-776.
  • 2SJ(O)BERG M,KARI L.Non-linear behavior of a rubber isolator system using fractional derivatives[J].Vehicle System Dynamics,2002(37):217-236.
  • 3DZIERZEK S.Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior[R].SAE 2000-01-0095,2000.
  • 4SHASKA K.The characterization of nonlinear viscoelastic isolators[D].Michigan:Wayne State University,2005.
  • 5GENT A N.橡胶工程[M].2版.北京:化学工业出版社,2002.
  • 6SJ(O)BERG M.Nonlinear isolator dynamics at finite deformations:An effective hyperelastic,fractional derivative,generalized friction model[J].Nonlinear Dynamics,2003(33):323-336.
  • 7SJ(O)BERG M.Rubber isolators-measurements and modelling using fractional derivatives and friction[R].SAE 2000-01-3518,2000.
  • 8GARCíA-TáRRAGO M J,KARI L.Frequency and amplitude dependence of the axial and radial stiffness of carbon-black filled rubber bushings[J].Polymer Testing,2007(26):629-638.
  • 9BERG M.A non-linear rubber spring model for rail vehicle dynamics analysis,vehicle system dynamics[J].1998,30:197-212.

同被引文献482

引证文献14

二级引证文献443

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部