期刊文献+

基于SVR的万向节机构可靠性及灵敏度分析 被引量:3

Analyzing the reliability and sensitivity of universal joint mechanism using support vector regression
原文传递
导出
摘要 针对结构隐式极限状态函数的可靠性分析问题,将支持向量机回归理论应用到万向节机构可靠性分析中,提出了一种基于支持向量机回归的万向节机构可靠性分析方法.通过支持向量机回归与一次二阶矩法相结合,利用支持向量机的小样本学习能力,将隐式极限状态函数近似为显式极限状态函数.运用蒙特卡罗法计算出万向节机构的可靠性指标,然后由高精度的显式极限状态方程进行各随机变量的灵敏度分析.最后以某剪切机中万向节机构为对象,进行了机构的可靠性及灵敏度分析.结果表明:该方法具有高精度和高效率的优点,并对其他机械结构可靠性分析具有一定的参考意义. For the reliability analysis of structure with implicit limit state function,the support vector regression theory is applied to reliability analysis of universal joint mechanism,and a method for reliability analysis of universal joint mechanism is presented through support vector regression. Using the small sample learning capacity of support vector machine,implicit limit state function is approximated to explicit limit state function by combining the support vector regression with first order reliability method. The reliability index of universal joint mechanism is calculated using Monte Carlo methods,and then explicit limit state function could be employed to analyze the sensitivity of each parameter. Finally,the reliability and sensitivity analysis of universal joint mechanism in a shearing machine are carried out using the presented method. The results show that the presented method has two virtues of high accuracy and efficiency,and it has a certain useful value for other mechanical structure reliability analysis.
出处 《华中科技大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第7期12-15,共4页 Journal of Huazhong University of Science and Technology(Natural Science Edition)
基金 高等学校博士学科点专项科研基金资助项目(200806131014)
关键词 支持向量机 万向节 蒙特卡罗法 可靠性分析 灵敏度分析 support vector machines universal joints Monte Carlo methods reliability analysis sensitivity analysis
  • 相关文献

参考文献7

  • 1赵洪波,茹忠亮,张士科.SVM在地下工程可靠性分析中的应用[J].岩土力学,2009,30(2):526-530. 被引量:16
  • 2Hurtado J E. An examination of methods for approxi mating implicit limit state functions from the view point of statistical learning theory [J]. Struetural Safety, 2004, 26(3): 271-293.
  • 3Gomes H M, Awruch A M. Comparison of response surface and neural network witb other methods for structural reliability analysis[J]. Structural Safety, 2004. 26(1): 19-67.
  • 4Rocco C M, Moreno J A. Fast Monte Carlo reliability evaluation using support vector machine [J]. Reliability Engineering and System Safety, 2002, 76(3): 237-243.
  • 5马超,吕震宙.结构可靠性分析的支持向量机分类迭代算法[J].中国机械工程,2007,18(7):816-819. 被引量:9
  • 6Narwaria M, I.in W. Objeclive image quality assessmerit based on support vector regression[J]. IEEE Transactions on Neural Networks. 2010. 21 (3): 515-519.
  • 7谭冬梅,瞿伟廉,王锦文.基于小波包和支持向量机的结构有限元模型修正[J].华中科技大学学报(自然科学版),2009,37(6):104-107. 被引量:5

二级参考文献34

  • 1陆有忠,杨有贞,张会林.边坡工程可靠性的支持向量机估计[J].岩石力学与工程学报,2005,24(1):149-153. 被引量:24
  • 2毕忠伟,丁德馨.地下工程可靠性分析方法与进展[J].地下空间,2004,24(4):522-525. 被引量:12
  • 3张弥,沈永清.用响应面方法分析铁路明洞结构荷载效应[J].土木工程学报,1993,26(2):58-66. 被引量:31
  • 4李晓红,王宏图,贾剑青,杨春和,胡国忠,薛占新.隧道及地下工程围岩稳定性及可靠性分析的极限位移判别[J].岩土力学,2005,26(6):850-854. 被引量:48
  • 5Brownjohn J M W, Xia Pinqi, Hong Hao, et al. Civil structure condition assessment by FE model updating: methodology and case studies[J]. Finite Elements in Analysis and Design, 2001, 37 (10): 761- 776.
  • 6Zapico J L, Gonzalez M P, Friswell M I, et al. Finite element model updating of a small scale bridge[J]. Journal of Sound and Vibration, 2003, 268(5): 993- 1 012.
  • 7Wu J R, Li Q S. Finite element model updating for a high-rise structure based on ambient vibration measurements[J].Engineering Structures, 2004, 26 (7) : 979-990.
  • 8Law S S, Chan T H T, Wu D. Super-element with semi-rigid joints in model updating[J]. Journal of Sound and Vibration, 2001, 239(1) 19-39.
  • 9Vapnik V N. Estimation of dependences based on empirica data[M]. Berlin: Springer Verlag, 1982.
  • 10Vapnik V N 张学工.统计学习理论的本质[M].北京:清华大学出版社,2000..

共引文献26

同被引文献22

  • 1PETER Bjerager, STEEN Krenk. Parametric sensitivity in first order reliability theory[J]. Journal of Engineering Mechanics, 1989, 115(6): 1577-1582.
  • 2MARTIN P. Review of mechanical reliability [J]. Process Mechanical Engineering, 1998, 27 ( 21 ):281-287.
  • 3SONG Shu-fen, LU Zhen-zhou, QIAO Hong-wei. Subset simulation for structural reliability sensitivity analysis[J]. Reliability Engineering & System Safety, 2009, 94(2) : 658-665.
  • 4HUANG Guang-bin. Extreme learning machine: theory and applications[J]. Neurocomputing, 2006, 70 ( 11 ) : 489-501.
  • 5WU Y-T, SITAKANTA Mohanty. Variable screening and ranking using sampling-based sensitivity measures [J]. Reliability Engineering & System Safety, 2006, 91(6): 634- 647.
  • 6KIM Jeong, SONG Woo-Jin, KANG Beom-Soo. Stochastic approach to kinematic reliability of open-loop mechanism with dimensional tolerance [J]. Applied Mathematical Modelling, 2010, 34(5) : 1225-1237.
  • 7HUANG Guang-bin. A Matlab ELM toolbox[EB/OL]. [2012-04-05]. http://www. ntu. edu. sg/home/egbhuang/.
  • 8朱伟,赖雄鸣.多参数影响机构的可靠度敏感性分析[J].工程设计学报,2011,18(2):124-129. 被引量:2
  • 9金雅娟,张义民.基于鞍点逼近的机械结构可靠性稳健优化设计[J].工程设计学报,2012,19(2):81-85. 被引量:7
  • 10孙晋坤,刘庆丰,冷朝霞,王华民,同向前.基于效率模型的DC-DC变换器并联系统电流分配策略[J].中国电机工程学报,2013,33(15):10-18. 被引量:18

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部