摘要
驾驶员疲劳驾驶是造成交通死亡事故的重要原因之一,研究驾驶疲劳自动识别具有重要的理论意义和应用价值。提出了一种新的基于自适应的保局投影的疲劳识别方法。采用保局投影进行疲劳特征提取,并利用邻域压缩或扩张方法自适应选取保局投影算法中的邻域,既加强了样本点间的关联性,又保持了局部几何结构;采用模糊k近邻的方法进行疲劳识别。在人脸疲劳数据集上进行实验,结果说明了该方法的有效性。
Driver fatigue detection is attractive in Intelligent Transportation Systems(ITS).It has great theoretical significance and practical application value.A new method is proposed for fatigue recognition based on adaptive locality preserving projec- tions.Firstly, fatigue feature is extracted using locality preserving projections which adopt compression or expansion to select the neighborhoods.It can improve the correlativity of the data and maintain the local-geometric structure.Then,the fatigue ex- pression is recognized with fuzzy k-nearest neighborhood classification.The result shows that it is powerful and effective for fatigue recognition.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第22期187-189,共3页
Computer Engineering and Applications
基金
中国博士点基金
湖南省自然科学基金No.05JJ30121~~
关键词
疲劳识别
保局投影
自适应邻域选择
模糊k近邻
fatigue detection
locality preserving projections
adaptive neighborhood selection
fuzzy k-nearest neighborhood