期刊文献+

基于粒子滤波的扩展目标检测前跟踪算法 被引量:2

A Track-before-Detect Algorithm for Tracking Extended Targets Based on Particle Filter
下载PDF
导出
摘要 针对扩展目标跟踪检测问题,把粒子滤波与检测前跟踪算法相结合应用于扩展目标。把目标强度和空间长度引入状态向量,解决粒子滤波易发散的缺点,实现对扩展目标的有效跟踪检测。最后,在对目标有效检测的基础上,对目标强度和空间长度进行估计。仿真表明,该算法能够较好地跟踪和检测扩展目标,并能有效估计目标强度和扩展长度。 Based on track-before-detect algorithm,Particle Filtering(PF) was used to track and detect the extended targets.Target intensity and target length were introduced into the state vector to restrain the divergence of PF and realize effective tracking and detection of extended targets.The target intensity and target length were estimated on the basis of the available detection.Simulations illustrated that the algorithm can track and detect extended targets,and estimate the intensity and length of the targets effectively.
出处 《电光与控制》 北大核心 2010年第8期41-44,共4页 Electronics Optics & Control
基金 全国优秀博士学位论文作者专项资金项目(200443)
关键词 扩展目标 粒子滤波 检测前跟踪 extended target particle filtering track-before-detect
  • 相关文献

参考文献10

  • 1TORSTENSSON J,TRIEB M.Praticle filtering for track before detect application[D].Linkoping:Linkoping University,Sweden,2005.
  • 2GILHOLM K,GOOSILL S,MASKELL S,et al.Poisson models for extended target and group tracking[C] // SPIE,Signal and Data Processing of Small Targets,San Diego,CA,USA,2005,5913:59130R.
  • 3TSOU Haiping,YAN T Y.The extended-image tracking technique based on the maximum likelihood estimation[R].Jet Propulsion Laboratory California Institute of Technology,1999.
  • 4GILHOLM K,SALMOND D.Spatial distribution model for tracking extended objects[J].Radar Sonar and Navigation,2005,152(5):364-371.
  • 5BOERS Y,DRIESSEN H,TORSTENSSON J,et al.A track before detect algorithm for tracking extended targets[J].Radar Sonar and Navigation,2006,153(4):345-351.
  • 6李晓波,王晟达,梁娟.ESM与雷达航迹关联的最大似然估计算法[J].电光与控制,2007,14(1):46-47. 被引量:6
  • 7TONISSEN S M,BAR-SHALOM Y.Maximum likelihood track-before-detect with fluctuating target amplitude[J].IEEE Trans Aerospace and Electronic System,1998,34:796-809.
  • 8WEN C Y,LEE C H.Point spread functions and their applications to forensic image restoration[J].Forensic Science Journal,2002(1):15-26.
  • 9梁晓龙,冯金富,杨啸天,刘安,胡俊华.基于集群智能粒子滤波的弹道导弹跟踪[J].电光与控制,2009,16(7):29-32. 被引量:8
  • 10龚亚信,杨宏文,胡卫东,郁文贤.基于粒子滤波的弱目标检测前跟踪算法[J].系统工程与电子技术,2007,29(12):2143-2148. 被引量:22

二级参考文献30

  • 1陈福增.多传感器数据融合的数学方法[J].数学的实践与认识,1995,25(2):11-16. 被引量:76
  • 2邓小龙,谢剑英,倪宏伟.Improved Particle Filter for Target Tracking[J].Chinese Journal of Aeronautics,2005,18(2):166-170. 被引量:4
  • 3邹国辉,敬忠良,胡洪涛.基于优化组合重采样的粒子滤波算法[J].上海交通大学学报,2006,40(7):1135-1139. 被引量:43
  • 4RONGHUA L, BINGRONG H. Coevolution based adaptive Monte Carlo localization [ J]. Int J of Advanced Robotic Systems ,2004,1 (3) : 183-190.
  • 5SIOURIS G M,CHEN Gumrong, WANG Jionrong. Tracking an incoming ballistic missile using an extended inter- val Kalman filter[ J]. IEEE Trans on Aerospace and Electronic Systems, 1997,33 ( 1 ) :232 -240.
  • 6CARDILLO G P, MRSTIK A V, PLAMBECK T. A track filter for reentry objects with uncertain drag [ J ]. IEEE Trans on Aerospace and Electronic Systems, 1999, 35 (2) :394 -409.
  • 7COOPERMAN R L. Tactical ballistic missile tracking using the interacting multiple model algorithm[ C]//Proceedings of the Fifth International Conference,2002 : 824- 831.
  • 8GORDON N J, SALMOND D J, SMITH A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation [ J]. IEEE Proceedings on Radar and Signal Processing, 1993, 140 (2) : 107 -113.
  • 9EBERHART R C, SHI Y H. Particle swarm optimization: developments, applications and resources [ C ]//Proceedings of the IEEE Congress on Evolutionary Computation, Piscataway, USA: IEEE Service Center, 2001:81-86.
  • 10LIANG Xiaolong, FENG Jinfu, LI Qian, et al. A swarm intelligence optimization for particle filter[ C]//The 7th World Congress on Intelligent Control and Automation, 2008 : 1986 -1991.

共引文献33

同被引文献13

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部