期刊文献+

基于Parzen窗的油液原子光谱数据半监督FCM聚类研究 被引量:2

Research on Oil Atomic Spectrometric Data Semi-Supervised Fuzzy C-Means Clustering Based on Parzen Window
下载PDF
导出
摘要 提出了一种基于Parzen窗的半监督模糊C-均值(Semi-supervised Fuzzy C-Means Based on Parzen window,PSFCM)聚类算法。根据训练样本确定出模糊C-均值(Fuzzy C-Means,FCM)的初始聚类中心;利用Parzen窗法计算出测试样本对各类状态的隶属度后,重新定义了隶属度迭代公式。通过齿轮箱磨损实验台模拟了齿轮箱的2种典型磨损故障并采集了油样。选取实验油样光谱分析数据中代表性元素Fe,Si,B的浓度值作为分析数据集的3维特征量,分别进行了FCM聚类和PSFCM聚类分析。聚类结果为:FCM聚类的正确率为48.9%,而融入了监督信息的PSFCM聚类的正确率为97.4%。实验说明,将PSFCM算法引入到油液原子光谱分析,降低了对人为经验和大量故障数据的依赖,提高了齿轮箱磨损故障诊断的准确度。 A Parzen window based semi-supervised fuzzy c-means (PSFCM) clustering algorithm was presented.The initial clustering centers of fuzzy c-means (FCM) were determined with training samples.The membership iteration of FCM was redefined after the membership degrees of testing samples relatively to each state were calculated using Parzen window.Two typical faults of gear box were simulated through the gear box bed in order to acquire the lubricant samples.Concentration of Fe,Si and B,which were the representative elements,was selected as the three-dimensional feature vectors to be analyzed with FCM and PSFCM clustering methods.The clustering results were that the correct ratio of FCM was 48.9%,while that of PSFCM was 97.4% because of integrating with supervised information.Experimental results also indicated that it can reduce the dependence of the experience and lots of faults data to introduce PSFCM into oil atomic spectrometric analysis.It was of great help in improving the wear faults diagnosis ratio.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第8期2175-2178,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(50705097) 军械工程学院基金项目(YJJXM08009) 清华大学摩擦学国家重点实验室开放基金项目(SKLTKF09B06)资助
关键词 齿轮箱 油液原子光谱分析 半监督模糊C-均值聚类 PARZEN窗 故障诊断 Gear box Oil atomic spectrometric analysis Semi-supervised fuzzy c-means clustering Parzen window Fault diagnosis
  • 相关文献

参考文献6

二级参考文献23

共引文献66

同被引文献24

  • 1李惠芳,常宁.基于神经网络的金属与非金属材料粘接质量定量检测[J].北京工业大学学报,2009,35(8):1122-1125. 被引量:7
  • 2万耀青,郑长松,马彪.油液分析故障诊断中的信息融合问题[J].机械设计,2004,21(9):1-3. 被引量:11
  • 3师小红,徐章遂,敦怡.构件裂纹缺陷的超声识别[J].固体火箭技术,2007,30(6):556-558. 被引量:4
  • 4PHILLIPS P, DISTON D, STARR A. Perspectives on the commercial development of landing gear health monitoring systems[J]. Transportation Research Part C: Emerging Technologies, 2011, 19(6): 1339-1352.
  • 5LI B, ZHANG P, WANG Z, et al. Gear fault detection using multi-scale morphological filters[J]. Measurement, 2011, 44(10): 2078-2089.
  • 6WANG W, KANNEG D.An integrated classifier for gear system monitoring[J]. Mechanical Systems and Signal Processing, 2009, 23(4): 1298-1312.
  • 7TAN C K, IRVING P, MBA D. A comparative experimental study on the diagnostic and prognostic capabilities of acoustics emission, vibration and spectrometric oil analysis for spur gears[J]. Mechanical Systems and Signal Processing, 2007, 21(1): 208-233.
  • 8PENG Z X. An integrated intelligence system for wear debris analysis[J]. Wear, 2002, 252(9/10): 730-743.
  • 9高经纬,张培林,李兵,等. 齿轮箱故障诊断的油液、振动信息融合方法[M]. 北京:机械工业出版社,2011: 12-23,45-46.
  • 10YIN X, KOMVOPOULOS K. A slip-line plasticity analysis of abrasive wear of a smooth and soft surface sliding against a rough (fractal) and hard surface[J]. International Journal of Solids and Structures, 2012, 49(1): 121-131.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部