期刊文献+

一种基于小生境的模糊支持向量机新算法

A new algorithm of fuzzy support vector machine based on niche
原文传递
导出
摘要 提出了一种基于小生境的模糊支持向量机新算法,该算法主要是通过对样本小生境与类小生境之间对比,并利用类小生境中样本最小半径来度量样本与类之间的关系,改变传统支持向量机简单使用样本欧氏距离来度量样本与类之间的关系的方法,克服了传统支持向量机算法对噪声和异常点过于敏感以及有效样本区分度差等缺点.实验数据表明,与只使用基于样本与类中心之间距离的传统模糊支持向量机算法相比,该算法提高了算法的收敛速度,且大大增强了包含噪声样本与有效样本的区分度. A new algorithm of fuzzy support vector machine based on niche is presented in this paper. In this algorithm, through comparing samples niche with class niche, the method of simply using Euclidean distance to measure the relationship of samples and class in the traditional support vector machine is changed by using the minimum radius in class niche, and the disadvantages of traditional support vector machine, which are sensitive to noise and outliers, and poor performance of differentiation of valid samples are overcome. Experimental data show that compared with the traditional support vector machine which only uses the distance between the sample and the center of class, this new algorithm can improve the convergence speed, and thus greatly enhance the discrimination between valid samples and noise samples.
出处 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2010年第4期735-740,共6页 Journal of Sichuan University(Natural Science Edition)
基金 国家自然科学基金(70971043) 江西省自然科学基金项目(2008GZS0028)
关键词 小生境 支持向量机 隶属度 噪声 niche, support vector machine, membership, noise
  • 相关文献

参考文献9

  • 1VAPNIK V N.The nature of statistical learning theory[M].New York:Springer-Verlag,1995.
  • 2Lin C F,Wang S D.Fuzzy support vector machines with automatic membership setting[J].Stud Fuzz,2005(177):233.
  • 3CHIANG J H,Hao P Y.A new kerne12based fuzzy clustering approach:support vector clustering with cell Growing[J].IEEE Transactions on Fuzzy Systems,2003,11(4):518.
  • 4张翔,肖小玲,徐光祐.模糊支持向量机中隶属度的确定与分析[J].中国图象图形学报,2006,11(8):1188-1192. 被引量:38
  • 5邵壮丰,杨晓伟,吴广潮.自适应模糊支持向量机算法[J].计算机工程与应用,2006,42(27):53-56. 被引量:4
  • 6杨志民,田英杰,邓乃扬.模糊支持向量分类机[J].计算机工程,2005,31(20):25-26. 被引量:7
  • 7David E.Goldberg,Jon Richardson.Genetic algorithms with sharing for multimodal function optimization,proceedings of the Second International Conference on Genetic Algorithms on Genetic algorithms and their application[C].Hillsdale,NJ,USA:L.Erlbaum Associates Inc.1987,41.
  • 8Deb K,Goldberg D.An investigation of niche and species formation in genetic optimization.Proceedings of the third international conference on Genetic algorithms[C].San Francisco,CA,USA.Morgan Kaufmann Publishers Inc,1989:42.
  • 9薛磊,杨晓敏,吴炜,陈默,何小海.一种基于KNN与改进SVM的车牌字符识别算法[J].四川大学学报(自然科学版),2006,43(5):1031-1036. 被引量:21

二级参考文献31

  • 1杨晓敏,吴炜,黎涛,何小海.基于Gabor变换和支持向量机的车牌字符识别算法[J].四川大学学报(工程科学版),2005,37(5):130-134. 被引量:17
  • 2吴炜,杨晓敏,刘大宇,何小海.一种基于模糊模板匹配的车牌汉字识别方法[J].微型机与应用,2005,24(11):57-59. 被引量:13
  • 3VapnikV.统计学习理论的本质[M].北京:清华大学出版社,1999..
  • 4Lin C F, Wan Sh D. Fuzzy support vector machines [ J]. IEEE Transactions on Neural Networks, 2002,13(2) :464 - 471.
  • 5Chiang J H, Hao P Y. A new kernel-based fuzzy clustering approach: support vector clustering With cell Growing [J]. IEEE Transactions on Fuzzy Systems, 2003,11 ( 4 ) : 518 - 527.
  • 6Lin Y, Lee Y, Wahba G. Support vector machines for classification in nonstandard situations [ J ]. Machine Learning, 2002,46 : 191 - 202.
  • 7Huang H P, Liu Y H. Fuzzy support vector machines for pattern recognition and data mining [ J ]. Internation Journal of Fuzzy Systems,2002,4(3 ) :826 - 835.
  • 8Zhang J S, Leung Y W. Robust clustering by pruning outliers [J].IEEE Transactions on Systems, Man and Cybernetics-Part B:Cybernetics,2003,33(6) :983 - 999.
  • 9George K,Dimitrios G, Nick K, et al. Efficient biased sampling for approximate clustering and outlier detection in large data sets [J].IEEE Transactions on Knowledge and Data Engineering. 2003,15(5) :1170-1187.
  • 10UduPa J K, Samarasekera S. Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation[J]. Graphical Model and Image Processing, 1995,58(3): 246 -261.

共引文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部