期刊文献+

内交换p群的中心扩张(Ⅱ) 被引量:2

The Central Extension of Inner Abelian p-Groups(Ⅱ)
原文传递
导出
摘要 设N,H是任意的群.若存在群G,它具有正规子群N≤Z(G),使得N≌N且G/N≌H,则称群G为N被H的中心扩张.本文完全分类了当N为循环p群,H为内交换p群时,N被H的中心扩张得到的所有不同构的群. Assume N and H are groups. If there is a group G which has a normal subgroup N^-≤Z(G) such that N^- ≈N and G/N^- ≈H, then G is called a central extension of N by H. In this paper, we classify all groups which are central extensions of N by H, where N is a cyclic p-group and H is an inner abelian p-group.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 2010年第5期933-944,共12页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金资助项目(10671114) 山西省自然科学基金(2008012001) 山西省回国留学人员科研项目([2007]13-56)资助
关键词 中心扩张 循环p群 内交换p群 central extensions cyclic p-groups inner abelian p-groups
  • 相关文献

参考文献13

  • 1Robinson D. 3. S., A Course in the Theory of Groups, New York: Springer-Verlag, 1980.
  • 2Suzuki M., Group Theory L, New York: Springer-Verlag, 1982.
  • 3Xu M. Y., Qu H. P., Zhang Q. H., Finite p-groups all of whose subgroups of index p^2 are metacyclic, to appear in Acta Math. Sci.
  • 4Zhang Q. H., Guo X. Q., Qu H. P., Xu M. Y., Finite groups which have many normal subgroups, J. Korean Math. Soc., 2009, 46(6): 1165-1178.
  • 5Zhang Q. H., Li L. L., Xu M. Y., Finite p-groups all of whose quotient groups are abelian or inner-abelian, to appear in Comm. Alg.
  • 6Miller G. A., Moreno H. C., Non-abelian groups in which every subgroup is abelian, Trans. Amer. Math. Soc., 1903, 4: 398-404.
  • 7Redei L., Das schiefe product in der Gruppentheorie, Comm. Math. Helv., 1947, 20: 225-267.
  • 8Berkovich Y., Janko Z., Groups of Prime Power Order, Volume 1, Berlin, New York: Walter de Gruyter, 2004.
  • 9Li L. L., Qu H. P., Chen G. Y., The central extension of inner abelian p-groups (I), Aeta Mathematiea Siniea, Chinese Series, 2010, 53(4): 675-684.
  • 10Xu M. Y., Introduction to Finite Groups (Ⅰ, Ⅱ), Beijing: Beijing Science Press, 1999.

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部