期刊文献+

UNIFIED ANALYSIS OF TIME DOMAIN MIXED FINITE ELEMENT METHODS FOR MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA 被引量:2

UNIFIED ANALYSIS OF TIME DOMAIN MIXED FINITE ELEMENT METHODS FOR MAXWELL'S EQUATIONS IN DISPERSIVE MEDIA
原文传递
导出
摘要 In this paper, we consider the time dependent Maxwell's equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Ndd@lec spaces. Extensions to multiple pole dispersive media are presented also. In this paper, we consider the time dependent Maxwell's equations when dispersive media are involved. The Crank-Nicolson mixed finite element methods are developed for three most popular dispersive medium models: the isotropic cold plasma, the one-pole Debye medium and the two-pole Lorentz medium. Optimal error estimates are proved for all three models solved by the Raviart-Thomas-Ndd@lec spaces. Extensions to multiple pole dispersive media are presented also.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2010年第5期693-710,共18页 计算数学(英文)
基金 supported by Natural Science Foundation grant DMS-0810896
关键词 method.Maxwell's equations Dispersive media Mixed finite element method.Maxwell's equations, Dispersive media, Mixed finite element
  • 引文网络
  • 相关文献

参考文献2

二级参考文献36

  • 1F. Bachinger, U. Langer and J. Schoberl, Numerical analysis of nonlinear multiharmonic eddy current problems, Numer. Math., 100 (2005), 593-616.
  • 2F, London, Superfluids. Vol. I.: Macroscopic theory of superconductivity, New York: John Wiley & Sons, Inc. London: Chapman & Hall, Ltd., New York, 1950.
  • 3F. London, Superfluids. Vol. II. Macroscopic theory of superfluid helium, John Wiley & Sons, Inc., New York, 1954.
  • 4S. Chapman, A hierarchy of models for type-Ⅱ superconductors, SIAM Rev., 42:4 (2000), 555-598.
  • 5M. Fabrizio and A. Morro, Electromagnetism of continuous media. Mathematical modelling and applications, Oxford University Press, Oxford, 2003.
  • 6J. Barrett and L. Prigozhin, Bean's critical-state model as the p →∞ limit of an evolutionary p-Laplacian equation, Nonlinear Anal-Theor.~ 42A:6 (2000), 977-993.
  • 7H.M. Yin, B.Q. Li and J. Zou, A degenerate evolution system modeling Bean's critical-state type- Ⅱsuperconductors, Discrete Cont. Dyn. S., 8:3 (2002), 781-794.
  • 8W. Wei and H.M. Yin, Numerical solutions to Bean's critical-state model for type-Ⅱ superconductors, Int. J. Numer. Anal. Model., 2:4 (2005), 479-488.
  • 9M. Slodicka, A time discretization scheme for a non-linear degenerate eddy current model for ferromagnetic materials, IMA J. Numer. Anal., 26 (2006), 173-187.
  • 10M. Slodicka, Nonlinear diffusion in type-Ⅱ superconductors, J. Comput. Appl. Math., 215:2 (2008), 568-576.

共引文献1

引证文献2

二级引证文献1

;
使用帮助 返回顶部