期刊文献+

基于DNA微阵列数据的癌症分类问题研究进展 被引量:20

State of the Art on Cancer Classification Problems Based on DNA Microarray Data
下载PDF
导出
摘要 应用DNA微阵列数据对癌症进行诊断与分型,已经逐渐成为生物信息学领域的研究热点之一。首先概述了基于微阵列数据的癌症分类问题的研究现状与发展趋势。然后简要介绍了微阵列实验的基本步骤,微阵列数据的结构、特点以及用于癌症分类的基本流程。接下来重点从数据预处理、特征基因选择、分类器设计以及分类性能评价等几方面对近10年来的研究成果进行了详细的综述与比较分析。最后,对该领域目前仍然存在的问题进行了归纳并对未来可能的研究方向作出了预测与展望。 Applying DNA microarray data to diagnose for cancer and recognize different subtypes of the same tumor has been becoming one of hot topics in Bioinformatics.Firstly,this paper summarized the state of the art and the development trend for cancer classification based on microarray data.Then the basic procedure of DNA microarray experiments,structure characteristics of microarray data and general process for cancer classification based on DNA microarray data were introduced.After that,a detailed survey and systemic comparative analysis combined with the research results for the last ten years was made from several main aspects listed as below:data preprocessing,feature gene selection,classifier design classification performance evaluation.Finally,some subsistent difficulties in this research field were summarized and meanwhile,the possible directions for future work were also predicted and suggested.
出处 《计算机科学》 CSCD 北大核心 2010年第10期16-22,32,共8页 Computer Science
基金 国家自然科学基金(60873036) 国家教育部博士点基金新教师项目(20070217051) 中国博士后基金(20060400809) 黑龙江省青年科技专项资助项目(QC06C022)资助
关键词 微阵列数据 癌症分类 数据预处理 特征基因选择 分类器设计 分类性能评价 Microarray data Cancer classification Data preprocessing Feature gene selection Classifier design Classification performance evaluation
  • 相关文献

参考文献84

  • 1Southern E M. DNA chips: analyzing sequence by hybridization to oligonucleotides on a large scale [J]. Trends in Genetics, 1996,12(3) : 110-115.
  • 2Hacia J H, Brody L C, Chee M S, et al. Detection of heterozy gous mutations in BRCA1 using high density oligonucleotide ar rays and two-colour fluorescence analysis[J]. Nature genetics 1996,14 (4) : 441-447.
  • 3Wang D G, et al. Large-scale Identification, Mapping, and Geno typing of Single-nucleotide Polymorphisms in the Human Genome[J]. Science, 1998,280(5366):1077-1082.
  • 4Golub T R, Slonim D K, Tamayo P, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring[J]. Science, 1999,286 (5439) : 531-537.
  • 5Alon U,Barkai N,Notterman D A, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by Oligonueleotide array[J]. Proceedings of the National Academy of Sciences, 1999,96 (12) : 6745-6750.
  • 6Alizadeh A A,Eisen M B,Davis R E,et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling[J]. Nature,2000,403(6769) : 503-511.
  • 7Pomeroy S L, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression[J]. Nature, 2002,415 (6870) : 436-442.
  • 8Shipp M A,Ross K N,Tamayo P,et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning[J]. Nature Medicine, 2002,8 ( 1 ): 68- 74.
  • 9Soinov L A, Krestyaninova M A, Brazma A. Towards reconstruction of gene networks from expression data by supervised learning[J]. Genome Biology, 2003,4 (1) : R6.
  • 10Pe'er D, Regev A, Elidan G, et al. Inferring subnetworks from perturbed expression profiles[J]. Bioinformaties, 2001,17 (Suppl 1) :S215-S224.

二级参考文献219

共引文献131

同被引文献191

引证文献20

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部