摘要
研究了埃尔米特多项式的一类和式的计算问题.利用埃尔米特多项式幂级数的生成函数及其可乘法则,通过对比两边幂级数的系数,以及对相关结论乘以系数后进行积分,得到关于埃尔米特多项式的一些恒等式.所得的恒等式简单而有趣,并有一定的推广性.
The main purpose of this paper is using Hermite polynomial generating functions,elementary methods and the nature of power series to study the calculating problem of one kind summation involving the Hermite polynomials and give some interesting identities.Orthogonal polynomials play a very important role in analysis and we also studied another important expansion contains Hermite polynomials.Using Hermite polynomial generating function and its multiplicative rule,by comparing both sides of the power series coefficients,reached a conclusion that proved Theorem 1.And also,multiplied by the coefficient on the relevant conclusions after integration,two specific theorems are derived.The identities are simple and interesting,and there are some promotional.
出处
《内蒙古师范大学学报(自然科学汉文版)》
CAS
2010年第5期444-446,共3页
Journal of Inner Mongolia Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(10671155)
关键词
埃尔米特多项式
幂级数
生成函数
初等方法
正交多项式
恒等式
Hermite polynomials
power series
generating function
elementary method
orthogonal polynomials
identity