摘要
This paper deals with the combination of point phonon and phason forces applied in the interior of infinite planes and half-planes of 1D quasicrystal bi-materials. Based on the general solution of quasicrystals, a series of displacement functions are adopted to obtain Green's functions for infinite planes and bi-material planes composed of two half-planes in the closed form, when the two half-planes are supposed to be ideally bonded or to be in smooth contact. Since the physical quantities can be readily calculated without the need of performing any transform operations, Green's functions are very convenient to be used in the study of point defects and inhomogeneities in the quasicrystal materials.
This paper deals with the combination of point phonon and phason forces applied in the interior of infinite planes and half-planes of 1D quasicrystal bi-materials. Based on the general solution of quasicrystals, a series of displacement functions are adopted to obtain Green's functions for infinite planes and bi-material planes composed of two half-planes in the closed form, when the two half-planes are supposed to be ideally bonded or to be in smooth contact. Since the physical quantities can be readily calculated without the need of performing any transform operations, Green's functions are very convenient to be used in the study of point defects and inhomogeneities in the quasicrystal materials.
基金
Project supported by the National Natural Science Foundation of China (No 10702077)
the Alexander von Humboldt Foundation in Germany