期刊文献+

新型Al-Mg-Si-Cu合金的热变形行为及力学性能 被引量:4

Hot deformation and mechanical properties of novel Al-Mg-Si-Cu alloy
下载PDF
导出
摘要 采用热模拟研究一种新型Al-Mg-Si-Cu合金的热变形行为,制定该合金的低温快速挤压工艺和在线热处理制度,利用电子万能实验机、光学显微镜、扫描电镜对合金的力学性能和组织进行分析。结果表明:新型Al-Mg-Si-Cu合金为正应变速率敏感材料;该合金的热压缩变形流变应力行为可用双曲正弦形式的本构方程来描述,也可用Zener-Hollomon参数来描述,其变形激活能为189.82kJ/mol;随着热变形温度的升高和应变速率的减小,合金的主要软化机制逐步由动态回复转变为动态再结晶;合金低温快速挤压后,经过在线风淬停留3h,然后200℃人工时效3h,其抗拉强度达到305MPa,屈服强度达到265MPa。 The hot deformation of a novel Al-Mg-Si-Cu alloy was studied by thermal simulation.High-speed extrusion process at low temperature and on-line heat treatment were developed.Mechanical properties and microstructures were analyzed by universal testing machine,optical microscopy and scanning electron microscopy.The results show that the novel Al-Mg-Si-Cu alloy is sensitive to strain rate.The hot deformation behavior of this alloy can be described by a constitutive equation in hyperbolic sine function,and can also be described by a Zener-Hollomon parameter with a hot deformation activation energy of 189.82 kJ/mol.The softening mechanism transforms from dynamic recovery to dynamic recrystallization with increasing temperature and decreasing strain rate.After high-speed extrusion at low temperatures,on-line air quenching for 3 h,and artificial aging at 200℃ for 3 h,the tensile strength of the alloy reaches 305 MPa,with the yield strength of 265 MPa.
出处 《中国有色金属学报》 EI CAS CSCD 北大核心 2010年第8期1501-1507,共7页 The Chinese Journal of Nonferrous Metals
基金 国家高技术研究发展计划资助项目(2003AA332070) 长沙市科技成果产业化资金专项资助项目(K0902002-11)
关键词 AL-MG-SI-CU合金 热变形 流变应力 显微组织 力学性能 Al-Mg-Si-Cu alloy hot deformation flow stress microstructure mechanical properties
  • 相关文献

参考文献7

二级参考文献61

  • 1韩冬峰,郑子樵,蒋呐,李劲风.高强可焊2195铝-锂合金热压缩变形的流变应力[J].中国有色金属学报,2004,14(12):2090-2095. 被引量:22
  • 2单凤兰,李吉学.形变铜中位错组态的电镜分析[J].电子显微学报,1995,14(3):186-188. 被引量:2
  • 3SELLARS C M. Modelling microstmetural development during hot rolling[J]. Mater Sci Technol, 1990, 16(11): 1072-1078.
  • 4HIRSCH J. Thermomechanical control in aluminium sheet production[J]. Materials Science Forum, 2003, 426(1 ): 185 - 194.
  • 5JAKOBSEN B, POULSEN H F, LIENERT U. Formation and subdivision of deformation structures[J]. Science, 2006, 312: 889-892.
  • 6HIRSTH J. Virtual fabrication of aluminum products-microstructure modeling in industrial aluminum production[M]. Weinheim: WILEY-VCH Veflag GmbH&Co KgaA, 2006: 83-110.
  • 7KOCKS U F, MECKING H. Physics and phenomenology of strain hardening: the FCC case[J]. Progress in Materials Sciences, 2003, 48: 171-273.
  • 8NES E. Modelling of work hardening and stress saturation in fcc metals[J]. Progress in Materials Science, 1998, 41 : 129-193.
  • 9NES E, MARTHINSEN K, RUNNING B. Modelling the evolution in microstructure and properties during processing of aluminium alloys[J]. Journal of Materials Processing Technology, 2001, 117: 333-340.
  • 10NES E, PETTERSEN T, MARTHINSEN K. On the mechanisms of work hardening and flow-stress saturation[J]. Scripta Mater, 2000, 43: 55-62.

共引文献122

同被引文献41

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部