期刊文献+

基于视觉特征的人形定位算法的提出及实现 被引量:1

Realization and Proposition of a Algorithm for Human Shape Location Based on Vision Features
下载PDF
导出
摘要 文章针对嵌入式红外安防系统中红外误报的问题,研究和提出将人形侦测引入到嵌入式安放系统中的来的观点。针对人形检测和定位的问题,提出了一种基于视觉特征的人体头肩模型,依据此模型给出了在基于ARM7微控制器环境下,人形识别的硬件处理方案,运动区域的提取方法和一种基于最大面积策略的人体运动区域的选择方案。最后利用MATLAB仿真环境和嵌入式系统的实际仿真,得知算法具有一定的针对性和有效性,能够解决直立人环境下人形的定位和检测问题。 In this paper,the idea to introduce human shape detection to embedded system to deal with the problem of infraied fault.At the same time,a model of human body head and shoulder using vision features was proposed to complete human shape detection and location.A hardware method in the ARM7 environment and the area selection method based on maximum area were put up.In the end an experiment was made under MATLAB emulation environment and the real embedded system.The result showed that this algorithm is relatively right and it can solve human shape detection and location problem in straight human environment.
出处 《计算机与数字工程》 2010年第10期109-112,共4页 Computer & Digital Engineering
关键词 人形检测 视觉特征 红外误报 ARM7 human shape detection vision features infiraed fault ARM7
  • 相关文献

参考文献9

二级参考文献61

  • 1Lipton A, Fujiyoshi H, Patil R. Moving target classification and tracking from real-time video[C]. Proc IEEE Workshop on Applications of Computer Vision, Princeton, N J, 1998,8-14.
  • 2Anderson C, Bert P, Vander Wal G. Change detection and tracking using pyramids transformation techniques [C]. Proc SPIE Conference on Intelligent Robots and Computer Vision,Cambridge, MA, 1985, 579:72-78.
  • 3Cuechiara R, Grana C, Piceardi M,et al. Detecting moving objects, ghosts, and shadows in video streams[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Oct 2003, 25(10):1337-1342.
  • 4Haritaoglu I, Larry S Davis, Harwood D. W4 who? When? Where? What? a real time system for deteeting and tracking people[C]. FGR98, 1998.
  • 5Elgammal A, Harwood D, Davis L. Non-parametric model for background subtraction[C]. IEEE ICCV'99 Frame-rate work- shop, Sept 1999.
  • 6Stauffer C, Grimson W. Learning patterns of activity using real-time tracking[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Aug 2000, 22(8):747-757.
  • 7Stenger B, Ramesh V, Paragios N, et al. Topology free hidden markov models: Application to background modeling[C]. 8th International Conference on Computer Vision, July 2001, 1: 294-301.
  • 8Fukunaga K, Hostetler L D. The estimation of the gradient of a density function, with applications in pattern recognition[J]. IEEE Transactions on Information Theory, 1975, 21 (1):32- 40.
  • 9Boykov Y, Huttenlocher D P. Adaptive bayesian recognition in tracking rigid objects[C]. Proc IEEE Conference on Computer Vision and Pattern Recognition, June 2000, 2:697-704.
  • 10Hu Wei-ming,Xiao Xue-juan,Fu Zhou-yu,et al. A system for learning statistical motion patterns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, Sept 2006, 28(9): 1450-1464.

共引文献36

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部