摘要
针对心电信号(Electrocardiogram,ECG)的情感识别问题,将局部搜索策略和变异引入蚁群系统(Ant Colony System,ACS)用于特征选择;用K近邻法对高兴和悲伤两种情感分类,在获得较高的识别率和有效特征组合的同时,提高了收敛速度,最好识别率达到93.64%。实验仿真结果表明,该方法是行之有效的。
For the problem of emotion recognition of Electrocardiogram(ECG) signals,a method of feature selection based on Ant Colony System(ACS) that has introduced local search strategy and variation is used to select feature,which accelerates convergence and obtains higher recognition rate and effective feature subset, and the best recognition rate can reach 93.64% using K-nearest neighbor for emotion classification.Simulation results show that this method is feasible.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第31期212-214,242,共4页
Computer Engineering and Applications
基金
国家自然科学基金No.60873143
西南大学国家重点学科基础心理学科研基金No.NKSF07003~~
关键词
蚁群系统
情感识别
特征选择
心电信号
Ant Colony System (ACS)
emotion recognition
feature selection
Electrocardiogram (ECG)