期刊文献+

特征融合与约简的纹理分类方法研究 被引量:2

Texture Classification Study Based on Feature Fusion and Selection
下载PDF
导出
摘要 提出了一种新的基于多特征融合的纹理分类算法.首先,通过灰度共生矩阵(GLCM)、高斯马尔科夫随机场(GMRF)和二进制小波(Wavelet)抽取纹理特征,采用基于K近邻域(K-NN)分类器的留一法交叉验证错误率作为顺序前向搜索算法(SFS)的评估函数进行特征约简,从而有效地将多特征进行融合,最后利用K-NN分类器对融合后的特征进行分类.对Brodaz纹理库的测试结果证实:(1)GCLM,GMRF和Wavelet方法提取的纹理特征具有互补性与协同性;(2)与单独的纹理特征提取方法相比,多特征融合与约简的方法取得了更高的识别精度;(3)与简单的特征联合方法相比,文中提出的方法识别率可提高约4%;(4)与经典特征降维方法(主成分变换(PCA)、Fish-er判别(LDA)法)相比,文中提出的方法在识别精度和识别效率方面更具有优势,是一种实用的纹理分类方法. In this paper,a novel texture classification method is proposed based on multi-features combination.Firstly,GLCM,GMRF and wavelet decomposition are used for texture feature extraction. Then the number of features is deduced by sequential forward search(SFS)algorithm and K-NN classifier"leave-one-out"error rate as the evaluation function.Systematic experimental comparison using Brodatz texture set shows that(1)texture features from GCLM,GMRF and dyadic wavelet are complementary and collaborative;(2)classification accuracy based on fused features outperforms each method individually;(3)compared with the simple combination of features from each method,the accuracy of proposed method increases by 4%;(4)compared with such feature extraction and dimensional reduction methods as principle component analysis and Fisher linear discriminant analysis,the proposed method is more accurate and efficient,and,consequently,apractical texture classification method.
出处 《武汉理工大学学报(交通科学与工程版)》 2010年第5期1004-1008,共5页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 国家863计划项目资助(批准号:2003AA135010)
关键词 高斯马尔科夫随机场 二进制小波 特征融合 顺序前向搜索算法 gray level co-occurrence matrix Gaussian Markov random field dyadic wavelet feature fusion sequential forward search
  • 相关文献

参考文献14

  • 1Tuceryan M, Jain A K. The handbook of pattern recognition and computer vision[M]. World Scientific Publishing, 1998.
  • 2Randen T, Husoy J H. Filtering for texture classification: a comparative study[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21(4) : 291-310.
  • 3Haralick R M. Textural features for image classification[J]. IEEE Transactions on Systems, Man and Cybernetics, 1973,3(6) :610-621.
  • 4Clausi D A. An analysis of co-occurrence texture sta tistics as a function of Grey level Quantization[J]. Canadian Journal of Remote Sensing, 2002,28 (1) 45-62.
  • 5Chellappa R, Chatterjee S. Classification of texture using gaussian markov random field Models[J]. IEEE Transactions on. Acoustics, Speech, and Signal Processing, 1984, 33(4):959-963.
  • 6Clausi D A, Comparing cooccurrence probabilities and markov random fields for texture analysis of SAR sea Ice imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004,42 ( 1 ) : 215-228.
  • 7李亚春,夏德深,徐萌.小波变换在图像纹理分析中的研究进展[J].计算机工程与应用,2005,41(35):47-51. 被引量:11
  • 8Mojsilovic A, Popovic M V, Rackov D M. On the selection of an optical wavelet basis for texture[J]. Characterization [J]. IEEE Transactions on Image Processing, 2000,12 (9) : 2043-2050.
  • 9彭玲,赵忠明,杨健,马江林.基于小波域隐马尔可夫树模型的多光谱遥感影像纹理分割技术研究[J].武汉理工大学学报(交通科学与工程版),2006,30(4):561-564. 被引量:3
  • 10Whitney A W. Direct a method of nonparametric measurement selection[J]. IEEE Transactions on Computers, 1971,20(9) : 1100-1103.

二级参考文献36

  • 1[1]Myron F. Query by image and video content: the QBIC system. Computer, 1995, 9(1): 23~32
  • 2[2]Niblack W, Zhu X, Hafner J L, et al. Updates to the QBIC system. In: SPIE, 1998, 332: 150~161
  • 3[3]Mehtre B M. Content-based image retrieval using a composite color-shape approach. Information Processing & Management, 1998, 34(1): 109~120
  • 4[4]Rui Y, Huang T S, Ortega M, et al. Relevance feedback: a power tool in interactive content-based image retrieval. IEEE CSVT, 1998, 8(5): 644~655
  • 5[5]Xu Yian, Zhang Yujin. Image retrieval framework driven by association feedback with feature element evaluation built. In: SPIE, 2001, 15: 118~129
  • 6[6]Michael S L. Next-Generation Web searches for visual content. Computer, 2000, 33(11): 46~53
  • 7章毓晋.图像分割[M].北京:科学出版社,2001.34.
  • 8Manian V,Michael D,Ramón V.Wavelet Features for Color Image Classification[C].In:Imaging and Geospatial Information Society 2000Annual Conference.
  • 9Mojsilovic A,Popovic M V,Rackov D M.On The Selection of an Optical Wavelet Basis for Texture Characterization[J].IEEE Trans Image Processing,2000:12(9):2043-2050.
  • 10Manian Vidya,Ramon Vasquez.Scaled and Rotated Texture Classification Using a Class of Basis Functions[J].Pattern Recognition,1998;31 (12):1937-1948.

共引文献16

同被引文献9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部