期刊文献+

基于油液原子光谱多维时间序列模型的机械磨损状态监测研究 被引量:3

Research on Monitoring Mechanical Wear State Based on Oil Spectrum Multi-Dimensional Time Series Model
下载PDF
导出
摘要 提出了一种利用润滑油原子光谱分析技术对机械磨损状态进行监测的新方法。对磨合期润滑油原子光谱数据建立多维时间序列模型并视为标准模型,将新数据通过此模型后得到残差并选择残差方差阵元素作为新数据所属磨损状态的特征。然后,利用主成分分析法对高维特征进行降维,提取前三个主成分构成对应磨损状态的特征向量。最后,利用欧式距离度量对测试样本进行分类,达到了对机械磨损状态识别的目的。利用上述方法,通过对某型履带车辆发动机台架实验的光谱数据进行分析,对发动机磨损状态进行了有效识别,从而证明了所提方法的有效性。结果表明,将多维时间序列模型引入油液光谱分析技术,能够实现光谱信息的有效融合,提高机械磨损状态监测的准确性。 A new method using oil atomic spectrometric analysis technology to monitor the mechanical wear state was proposed.Multi-dimensional time series model of oil atomic spectrometric data of running-in period was treated as the standard model.Residues remained after new data were processed by the standard model.The residues variance matrix was selected as the features of the corresponding wear state.Then,high dimensional feature vectors were reduced through the principal component analysis and the first three principal components were extracted to represent the wear state.Euclidean distance was computed for feature vectors to classify the testing samples.Thus,the mechanical wear state was identified correctly.The wear state of a specified track vehicle engine was effectively identified,which verified the validity of the proposed method.Experimental results showed that introducing the multi-dimensional time series model to oil spectrometric analysis can fuse the spectrum data and improve the accuracy of monitoring mechanical wear state.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第11期2902-2905,共4页 Spectroscopy and Spectral Analysis
基金 国家自然科学基金项目(50705097) 清华大学摩擦学国家重点实验室开放基金项目(SKLTKF09B06) 军械工程学院基金项目(YJJXM08009)资助
关键词 机械磨损状态监测 油液光谱分析 多维时间序列模型 主成分分析 欧式距离度量 Mechanical wear state monitoring Oil spectrometric analysis Multi-dimensional time series model Principal component analysis Euclidean distance measure
  • 相关文献

参考文献6

二级参考文献19

共引文献33

同被引文献25

  • 1明廷锋,朴甲哲,张永祥,危蓉.超声波磨粒监测方法的研究[J].内燃机学报,2004,22(4):357-362. 被引量:13
  • 2李韶辉,付集新,张冶.船舶机械油液检测光谱分析的特征参数研究[J].润滑与密封,2004,29(6):92-93. 被引量:7
  • 3朱华,吴兆宏,李刚,葛世荣.煤矿机械磨损失效研究[J].煤炭学报,2006,31(3):380-385. 被引量:79
  • 4Nick Kingsbury.Complex Wavelets for Shift Invariant Analysis and Filtering of Signals[J]. Applied and Computational Harmonic Analysis . 2001 (3)
  • 5Selesnick, Ivan W.,Baraniuk, Richard G.,Kingsbury, Nick G.The dual-tree complex wavelet transform. IEEE Signal Processing Magazine . 2005
  • 6Kingsbury NG.The dual-tree complex wavelet transform with improved orthogonality and symmetry properties. Proceedings of 2000 International Conference on Image Processing . 2000
  • 7Kingsbury NG.The dual-tree complex wavelet transform:a new technique for shift invariance and directional filters. Proceedings of 8th IEEE Digital Signal Processing Workshop . 1998
  • 8Hickling R.Analysis of echoes from a solid elastic sphere in water. . 1962
  • 9Nemarich C P,Whitesel H K,Sarkady A.On-line wear particle monitoring based on ultrasonic detection etection and discrimination. . 1989
  • 10陈志新,束学道,胡正寰.对偶树复小波分析及其在楔横轧轧件缺陷检测中的应用[J].中国机械工程,2009(18):2244-2247. 被引量:1

引证文献3

二级引证文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部