期刊文献+

植物耐盐基因工程研究进展 被引量:23

Research progress on plant salt stress tolerance genetic engineering
下载PDF
导出
摘要 盐害是农作物减产的主要因素,提高作物的耐盐性是提高全球粮食产量的基础。文章较系统地概述了植物盐胁迫信号传导通路研究现状,植物耐盐基因的挖掘,包括基于EST数据库的基因挖掘、通过转录谱确定胁迫响应基因以及应用转基因手段确定基因在胁迫耐受机制中的功能。同时系统阐述了各类耐盐基因的应用,包括渗透调节物质合成酶基因、氧胁迫相关基因、离子转运相关基因、编码转录因子的调节基因、感应和传导胁迫信号的蛋白激酶基因和其他调控序列。文章还对植物耐盐基因工程研究的现状进行了分析和提出建议,对进行植物基因工程研究工作具有参考价值和指导意义。 The salt stress is a major factor affecting the crop production so that improving the salt tolerance of crops is the foundation for global food production.This review provided an overview on the signaling pathway of plant salt tolerance and the discovery of salt stress-related genes,which included the discovery of genes based on EST datasets,and the identification of stress-responsive gene by transcript profiling and genes function in stress tolerance mechanisms identified through transgenic approaches.It also systematically discussed the application of salt stress-related genes,such as osmotic adjustment synthase genes,oxidation stress-related genes,ion transportation related genes,regulated genes encoding transcription factors and protein kinase genes which inducted and transducted the stress signal and other regulated sequences.Meanwhile,it analyzed current situations and proposed suggestions on plant salt tolerant genetic engineering.The review will provide the basis for plant salt tolerant genetic engineering researches.
出处 《东北农业大学学报》 CAS CSCD 北大核心 2010年第10期150-156,共7页 Journal of Northeast Agricultural University
基金 国家高技术研究发展计划"863计划"项目(2006AA100104)
关键词 基因工程 盐胁迫信号传导通路 基因挖掘 耐盐基因 非生物胁迫 genetic engineering salt stress signal transduction pathway gene digging salt tolerant gene abiotic stress
  • 相关文献

参考文献37

  • 1FAO, FAO Land and Plant Nutrition Management Service, Inc. Global network on integrated soil management for sustainable use of salt-affected soils [EB/OL]. [2010 -03 -08]. http://www.fao.org/ag/ agl/agll/spush.
  • 2Wang W, Vinoeur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance[J]. Planta, 2003, 218(1): 1-14.
  • 3Flowers T J. Improving crop salt tolerance[J]. Journal of Experimental Botany, 2004, 55(396): 307-319.
  • 4Mahajan S, Tuteja N. Cold, salinity and drought stresses: an overview[J]. Archives of Biochemistry and Biophysics, 2005, 444: 139- 158.
  • 5秘彩莉,郭光艳,齐志广,沈银柱.植物盐胁迫的信号传导途径[J].河北师范大学学报(自然科学版),2007,31(3):375-380. 被引量:6
  • 6柏锡,朱延明,李丽文,潘欣,翟红,纪巍,李勇,才华.转OsMAPK4基因水稻耐盐性分析[J].东北农业大学学报,2009,40(8):53-57. 被引量:6
  • 7Romeis T, Piedras P, Zhang S. Rapid Avr92 and Cf92 dependent activation of MAP kinases in tobacco cell cultures and leaves: convergence of resistance gene, elicitor, wound and salicylate responses[J]. Plant Cell, 1999, 11(2): 273-287.
  • 8Liu J, Zhu J K. An A rabidopsis mutant that requires increased calcium for potassium nutrition and salt tolerance[J]. Proc Natl Acad Sci, 1997, 94 (26): 14960-14964.
  • 9Hasegawa M, Bressan R, Pardo J M. The dawn of plant salt tolerance genetics[J]. Trends Plant Sci, 2000, 5(8): 317-319.
  • 10Liu J, Ishitani M, Hal Fter U, et al. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance[J]. Proc Natl Acad Sci, 2000, 97(7): 3730-3734.

二级参考文献57

  • 1吴涛,宗晓娟,谷令坤,李德全.植物中的MAPK及其在信号传导中的作用[J].生物技术通报,2006,22(5):1-7. 被引量:14
  • 2Reyna N S, Yang Y. Molecular analysis of the rice MAP kinase gene family in relation to Magnaporthe grisea infection [J]. Mol Plant Microbe Interact, 2006, 19(5): 530-540.
  • 3Fu S F, Chou W C, Huang D D, et al. Transcriptional regulation of a rice mitogen-activated protein kinase gene, OsMA PK4, in response to environmental stresses[J]. Plant Cell Physiol, 2002, 43(8): 958- 963.
  • 4萨姆布鲁克丁,ManiatisT.分子克隆实验指南[M].2版.北京:科学出版社.1992:50-56.
  • 5Mitsuhara I, Ugaki M, Hirochika H, et al. Efficient promoter cassettes for enhanced expression of foreign genes in dicotyledonous and monocotyledonous plants[J]. Plant Cell Physiol, 1996, 37 (1): 49-59.
  • 6Lin C W, Chang H B, Huang H J. Zinc induces mitogen-activated protein kinase activation mediated by reactive oxygen species in rice roots[J]. Plant Physiol Biochem, 2005, 43(10-11): 963-968.
  • 7Kurusu T, Yagala T, Miyao A, et al. Identification of a putative voltage-gated Ca^2+ channel as a key regulator of elicitor-induced hypersensitive cell death and mitogen-activated protein kinase activation in rice[J]. Plant J, 2005, 42(6): 798-809.
  • 8Song D, Chen J, Song F, et al. A novel rice MAPK gene, OsBIMK2, is involved in disease-resistance responses[J]. Plant Biol (Stuttg). 2006, 8(5): 587-596.
  • 9Mofiwaki A, Kubo E, Arase S, et al. Disruption of SRM1, a mitogen-activated protein kinase gene, affects sensitivity to osmotic and ultraviolet stressors in the phytopathogenic fungus Bipolaris oryzae [J]. FEMS Microbiol Lett, 2006, 257(2): 253-261.
  • 10Motoyama T, Ohira T, Kadokura K, et al. An Os-1 family histidine kinase from a filamentous fungus confers fungicide-sensitivity to yeast[J]. Curr Genet, 2005, 47(5): 298-306.

共引文献10

同被引文献360

引证文献23

二级引证文献135

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部