摘要
设B(H)表示在无穷维复Hilbert空间H上的所有有界线性算子全体.如果J为自伴算子,研究了算子方程XJ-JX*=M的等距算子解,并得到其有等距算子解与代数Riccati方程X2+M/2X-XM/2-M2/4-J2=0存在自伴算子解是等价的.
Given that represents the set of all bounded linear operators on a Hilbert space H and J is self-adjoint operator,the isometric solutions of the operator equation XJ-JX* = M was discussed to reach the conclusion that the isometric operator is equivalent to the self-adjoint operator in the algebraic Riccati equation X2+M/2X-XM/2-M2/4-J2=0.
出处
《宜宾学院学报》
2010年第6期10-11,17,共3页
Journal of Yibin University
基金
四川省教育厅青年基金资助项目(08ZA132)
关键词
算子方程
代数RICCATI方程
自伴算子
等距算子
operator equation
algebraic Riccati equation
self-adjoint operator
isometric operator.