期刊文献+

一种新型群体智能优化算法——微进化算法 被引量:8

Microevolution Algorithm:A New Swarm Intelligent Optimization
下载PDF
导出
摘要 提出了一种新型群体智能优化算法——微进化算法.该算法采用实数编码,基于个体自身历史最优位置,以群体中最优个体与当前个体的矢量差异信息作为指导,进行启发式搜索.数值实验结果表明:微进化算法简单有效、计算精度高、收敛速度快、鲁棒性强;此外,还具有参数设置简便、计算简单等特点. Microevolution Algorithm(MA),a new real-coded swarm intelligent algorithm,is proposed in this paper for optimization.Bsaed on the history of best individuals,MA replaces each individual in current population by a new individual,which is generated by the differences between the swarm globe best individual and the current individual.Numerical results indicate that MA is simple,robust,efficient,easy to use and requires few control variables.Moreover,MA has advantages of high precision and high speed.
出处 《厦门理工学院学报》 2010年第3期38-42,共5页 Journal of Xiamen University of Technology
关键词 全局优化算法 微进化算法 群体智能 函数优化 globe optimization method microevolution algorithm swarm intelligence function optimization
  • 相关文献

参考文献10

  • 1STORN R,PRICE K.Differential evolution-a simple and efficient heuristic for global optimization over continuous space[J].Journal of Global Optimization,1997,11(4):341-359.
  • 2KENNEDY J,EBERHART R C.Particle swarm optimization[C] //Proc IEEE Int Conf Neural Networks.Perth,Australia:IEEE Press,1995,11:1942-1948.
  • 3DORIGO M,MANIEZZO V,COLORNI A.The ant system:optimization by a colony of cooperating agents[J].IEEE Trans Syst Man Cyberne,Part B,1996,26(1):29-41.
  • 4YANG B S,LEE Y H,CHOI B K,et al.Optimum design of short journal bearings by artificial life algorithm[J].Tribology International,2001,34:427-435.
  • 5李晓磊,邵之江,钱积新.一种基于动物自治体的寻优模式:鱼群算法[J].系统工程理论与实践,2002,22(11):32-38. 被引量:884
  • 6喻海飞,汪定伟.食物链算法及其与实编码遗传算法性能比较研究[J].系统工程理论与实践,2007,27(6):143-148. 被引量:5
  • 7BAKWAD K M,PATTNAIK S S,SOHI B S,et al.Parallel bacterial foraging optimization for video compression[J].International Journal of Recent Trends in Engineering,2009,1(1):118-122.
  • 8LIU Y,QIN Z,SHI Z W,et al.Center particle swarm optimization[J].Neurocomputing:2007,70:672-679.
  • 9王联国,洪毅,赵付青,余冬梅.一种简化的人工鱼群算法[J].小型微型计算机系统,2009,30(8):1663-1667. 被引量:30
  • 10GEHLHAAR D K,FOGEL D B.Tuning evolutionary programming for conformationally flexible molecular docking[C] //In Proceedings of the Fifth Annual Conference on Evolutionary Progamming.Cambridge,MA:MIT Press,1996:419-429.

二级参考文献27

共引文献907

同被引文献74

引证文献8

二级引证文献27

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部