期刊文献+

想象左右手运动的脑电特征提取 被引量:16

Feature Extraction of EEG for Imagery Left-Right Hands Movement
下载PDF
导出
摘要 针对脑机接口中脑电信号特征提取的传统方法特征数量多、计算量大及分类正确率低等不足,提出了一种基于时域、频域、空域结合的方法用于提取大脑在想象左右手运动时所产生的事件相关去同步(ERD)和事件相关同步(ERS)信号。分别用独立分量分析(Independent Component Analysis,ICA)和小波变换提取原始脑电信号的空域特征及时频域特征,并用BP(BackPropagation)神经网络对提取的特征进行分类。分类实验结果表明,运用提出的方法提取的想象左右手运动脑电的特征,有效克服了传统的仅基于时频域特征提取方法在描述脑电信号本质特征方面的不足,具有较好的分类正确率。 With the aim to solve the problems in brain-computer interfaces such as huge amounts of features, heavy computation and low classification accuracy in the traditional methods for the feature extraction of electroencephalography(EEG), a new method based on time domain, frequency domain and space domain was proposed, which could extract event related desynchronization and event related synchronization(ERD/ERS) signals during imagining left and right hands movement. In this paper, Independent Component Analysis(ICA) and wavelet transform was used to extract the temporal, spectral and spacial features from the original EEG signals, and then the extracted features were classified by the BP(Back Propagation) neural network. The classification results showed that the features of EEG, which were extracted during imagining left and right hands movement with the proposed method, could effectively overcome the drawbacks of the traditional method based solely on time-frequency domain when describing the characteristic of the brain electrical signals. And the proposed method displayed better classification performance.
出处 《传感技术学报》 CAS CSCD 北大核心 2010年第9期1220-1225,共6页 Chinese Journal of Sensors and Actuators
关键词 脑机接口 脑电特征 独立分量分析 小波变换 神经网络 空域特征 BCI EEG features ICA wavelet transform neural network space domin features
  • 相关文献

参考文献13

  • 1Huang D,Xiang C,Ge S S.Recursive Fisher Linear Discriminant for BCI Applications[C]//ISSNIP 2007 3rd International Conference Melbourne,Australia:2007,383-388.
  • 2Mill N J.Adaptive brain interfaces[J].Commun.ACM,2003,46:74-80.
  • 3Mill N J,MOURI O J.Asynchronous BCI and Local Neural Classifiers:An Overview of the Adaptive Brain Computer Interface Project[J].IEEE Trans Neural Syst Rehabil Eng,2003,11:159-161.
  • 4范影乐,李谷,刘亚景,杨勇.基于排列组合熵的脑电意识任务识别方法的研究[J].传感技术学报,2008,21(1):74-78. 被引量:9
  • 5Christoph Guger,Alois Schlgl,Christa Neuper,et al.Rapid Prototyping of an EEG-Based Brain-Computer Interface(BCI)[J].IEEE Trans Neural Syst Rehab Eng,2001,9(1):49-58.
  • 6Tomonari Yamaguchi,Mitsuhiko Fujio,Katsuhiro Inoue,et al.Wavelet Analysis of EEG Singnals During Motor Imagery[C]//Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition Hong Kong:2008.454-459.
  • 7李明爱,王蕊,郝冬梅.想象左右手运动的脑电特征提取及分类研究[J].中国生物医学工程学报,2009,28(2):166-170. 被引量:15
  • 8Pfurtscheller G,Lopes da Silva F H.Event-Related EEG/EMG Synchronization and Desychronization:Basic Principles[J].Clin Neurophysiol,1999,110:1842-1857.
  • 9杨帮华,颜国正,鄢波.基于离散小波变换提取脑机接口中脑电特征[J].中国生物医学工程学报,2006,25(5):518-522. 被引量:20
  • 10万柏坤,周仲兴,刘亚伟,程龙龙,明东,綦宏志,朱誉环.基于ICA与PSD的ERD/ERS信号检测[J].天津大学学报,2008,41(11):1383-1390. 被引量:6

二级参考文献46

共引文献45

同被引文献178

引证文献16

二级引证文献106

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部