期刊文献+

基于RGB分量统计的可变区域彩色图像分割算法 被引量:1

Variable-domain approach for color image segmentation based on RGB statistical model
下载PDF
导出
摘要 为了能够对彩色图像进行高效的分割,提出了一种可变区域的图像分割算法,利用基于图像全局RGB分量统计信息的活动轮廓模型进行曲线演化,并使用水平集表示轮廓。通过改变和缩小分割区域的策略,将分割过程分为多个阶段进行。在灰度图像的分割算法的基础上,将可变区域策略拓展到彩色图像。实验结果表明,图像中多连通区域的物体能够被准确且快速地分割出来。与现有模型相比,可以自动地完成工作而无须人工干预,并且算法快速方面有明显的改进。 In order to segment color images efficiently,this paper proposed a variable-domain algorithm based on active contour models and global statistical RGB components.Curve evolution was employed for numerical implementation with level sets method.The essential idea was to re-define the computing domain in images repeatedly,by separating the segmentation procedure into several individual phases.The variable domain strategy was extended to color images based on gray-scale algorithm.According to the experimental results,the objects with multiple connection regions can be accurately and rapidly segmented.Compared to current methods,the work can be done automatically without manual intervention and the rapidity is improved evidently.
出处 《计算机应用研究》 CSCD 北大核心 2010年第11期4341-4344,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2007AA01Z160) 国家自然科学基金资助项目(60903067)
关键词 图像分割 彩色图像 可变区域 活动轮廓 邻域替代 统计模型 image segmentation color image variable-domain active contours neighborhood replacement statistical model
  • 相关文献

参考文献18

  • 1KASS M, WITKIN A, TERZOPOULOS D. Snakes: active contour models [ J ]. International Journal of Computer Vision, 1988, 1 (4) :321-331.
  • 2CASELLES V, KIMMEL R, SAPIRO G. Geodesic active contours [ J]. International Journal of Computer Vision, 1997,22 (1) :61- 79.
  • 3MUMFORD D, SHAH J. Optimal approximations by piecewise smooth functions and associated variational problems[ J]. Communications in Pure and Applied Mathematics, 1989,42 ( 5 ) : 577- 685.
  • 4CHAN T, VESE L. Active contours without edges[ J]. IEEE Trans on Image Processing,2001,10(2) :266-277.
  • 5RONFARD R. Region-based strategies for active contour models[ J]. International Journal of Computer Vision, 1994,13 (2) :229-251.
  • 6VESE L, CHANT. A muhiphase level set framework for image segmentation using the mumford and shah model [ J ]. International Journal of Computer Vision ,2002,50( 3 ) :271-293.
  • 7YEZZI A, WILLSKY A, TSAI A. A statistical approach to snakes for bimodal and trimodal imagery [ C ]//Proc of International Conference on Computer Vision. Kerkyra, Grecee : IEEE Press, 1999:898,903.
  • 8郑罡,王惠南,李远禄.基于Chan-Vese模型的树形结构多相水平集图像分割算法[J].电子学报,2006,34(8):1508-1512. 被引量:19
  • 9徐旦华,鲍旭东,舒华忠.基于区域划分和改进C-V法的医学图像分割方法[J].东南大学学报(自然科学版),2006,36(5):863-868. 被引量:7
  • 10DIBOS F, KOEPFLER G. Color segmentation using a variational formulation [ C ]//Proc of Actes du 16me Colloque GRETSI, Grenoble : IEEE Press, 1997:367-370.

二级参考文献25

  • 1吕庆文,陈武凡.基于互信息熵差测度的医学图像自动优化分割[J].中国科学(E辑),2006,36(6):657-667. 被引量:11
  • 2Osher S,Sethian J A.Fronts propagating with curvature-dependent speed:Algorithms based on hamilton-jacobi formulation[J].J Comput Phys,1988,79 (1):12-49.
  • 3Casselles V,et al.A geometric model for active contours[J].Numerische Mathematik,1993,66 (1):1-31.
  • 4Malladi R,et al.Shape modeling with front propagation:A level set approach[J].IEEE Trans on PAMI,1995,17 (2):158-175.
  • 5Caselles V,et al.Geodesic active contours[J].International Journal of Computer Vision,1997,22(1):61 -79.
  • 6Mumford D,Shah J.Optimal approximation by piecewise smooth functions and associated variational problems[J].Comm Pure Appl Math,1989,42(1):577 -685.
  • 7Chan T,Vese L.Active contours without edges[J].IEEE Trans on Image Processing,2001,10(2):266-277.
  • 8Heinemann E G.Simultaneous brightness induction as a'function of inducing-and test-field luminances[J].Journal of Experimental Psychology,1955,50 (2):89-96.
  • 9Osher S,Fedkiw R.Level Set Methods and Dynamic Implicit Surfaces[M].New York:Springer-Verlag New York,2003.
  • 10Kass M,et al.Snake:active contour models[J].International Journal Of Computer Vision,1987,1 (1):321 -31.

共引文献33

同被引文献10

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部