期刊文献+

CH3SCH3在Fe+作用下的脱烷基化反应机理的理论研究 被引量:2

Theoretical Study on the Mechanism of Fe^+-mediated Demethanation of CH_3SCH_3 under Atmospheric Conditions
原文传递
导出
摘要 采用密度泛函理论的B3LYP方法,在6-311++G(d,p)和DGDZVP基组水平上研究了CH3SCH3在Fe+作用下的脱烷基化的四重态和六重态微观反应机理,全参数优化了反应势能面上各驻点的几何构型,振动分析和内禀反应坐标(IRC)分析结果证实了中间体和过渡态的真实性.找到了三条可能的反应通道,对结果的分析表明:对于六重态的反应体系,二甲硫醚的脱甲烷化反应主要经历了四个基本步骤,即先驱复合物、C—S活化、(-H转移和非反应性的分裂.对于四重态的Fe+/CH3SCH3反应体系,含有C—S和C—H插入反应的两个路径都可以导致脱甲烷反应的发生,其中C—S插入反应路径的能垒较低,是主要反应通道. The demethanation reactions of dimethyl sulfide by Fe+ on both quartet and sextet potential energy surfaces have been investigated using density functional theory(B3LYP) in conjunction with the DGDZVP and 6-311+G(d,p) basis sets.Geometries of the stationary points were completely optimized.The transition states were validated by the vibrational analysis and the internal reaction coordinate(IRC) calculations.The vibration analysis and the IRC analysis testified the authenticity of intermediates and transition states.The calculation results indicate that,along the energetically preferable sextet pathway,the demethanation reaction can occur through four elementary steps,that is,encounter complexation,C-S activation,β-H shift,and nonreactive dissociation.Whereas along the quartet PES,both the C-S and methyl C-H activation could result in the demethanation reaction,of which,the reaction involving C-S activation is calculated to be the main pathway with relative lower energy barriers and intermediates.
出处 《分子催化》 EI CAS CSCD 北大核心 2010年第5期443-449,共7页 Journal of Molecular Catalysis(China)
基金 山东省自然科学基金(ZR2009BL002)
关键词 二甲基硫醚 脱烷基化 反应机理 密度泛函 Dimethyl sulfide Demethanation Reaction mechanism Density functional theory
  • 引文网络
  • 相关文献

参考文献19

  • 1Borah D, Baruah M K. Haque I. Fuel. Process. Tech. [ J ], 2005, 86 : 959.
  • 2Eller K, Schwarz H. Chem. Rev. [J], 1991,91- 1 121.
  • 3Bohme D K, Schwarz H. Angew. Chem. Int. Ed. [J], 2005, 44:2 336.
  • 4Schwarz H. Int. J. Mass. Spectrom. [ J], 2004, 237: 75.
  • 5Chen Q, Chen H, Kais S, et al. J. Am. Chem. Soc. [J], 1997, 119:12 879.
  • 6Lecaer S, Heninger M, Pernot P, et al. Phys. Chem. Chem. Phys. [J], 2002, 4:1 855.
  • 7Lecaer S, Mestdagh H, Schroder D. Int. J. Mass Spectrom. [J], 2006, 255:239.
  • 8Koo Y M, Kim M K, Jung K W. Int. J. Mass Spectrom.[ J ], 2005, 243 : 97.
  • 9van der Gerb K J, Ingemann S, Nibbering N M M. Rapid Commun. Mass Spectrom. [J] , 1993, 7:769.
  • 10Tolbert M A, Beauchamp J L. J. Phys. Chem. [ J ] , 1986, 90:5 015.

同被引文献60

  • 1赵三平,习海玲,左言军,王琦.Na_2MoO_4催化H_2O_2氧化芥子气模拟剂苯甲硫醚的动力学与产物[J].分子催化,2015,29(1):45-51. 被引量:8
  • 2管臣,习海玲,赵进才,乔江波,郭楠.联吡啶铁/H_2O_2体系在可见光下降解芥子气模拟剂2-CEES[J].分子催化,2007,21(2):162-167. 被引量:10
  • 3Li T, Huo L, Pulley C, Liu A. Decarboxylation mechanisms in biological system. Bioorganic Chemistry, 2012, 43:2-14.
  • 4Demirbas A. Mechanisms of liquefaction and pyrolysis reactions of biomass. Energy Conversion & Management, 2000, 41(6):633- 646.
  • 5Marehionni G, Petricci S, Spataro G, Pezzin G. A study of the thermal decarboxylation of three perfluoropolyether salts. Journal of Fluorine Chemistry, 2003, 124(2):123-130.
  • 6Zhang A, Ma Q, Wang K, Liu X, Shuler P, Tang Y. Naphthenic acid removal from crude oil through catalytic decarboxylation on magnesium oxide. Applied Catalysis A: General, 2006, 303(I): 103-109.
  • 7Zajac W W, Nowicki R B. Mechanism of cinnamic acid decarboxylation in an acid medium. Journal of Organic Chemistry, 1966, 31(8):2712-2713.
  • 8Ruelle P. Theoretical study on the mechanism of the thermal decarboxylation of acrylic and benzoic acids. Journal of Computational Chemistry, 1987, 8(2): 158-169.
  • 9Chuchev K, BelBruno J J. Mechanisms of decarboxylation of ortho-substituted benzoic acids. Journal of Molecular Structure: THEOCHEM, 2007, 807(1-3): 1-9.
  • 10Joll C A, Huynh T, Heitz A. Off-line tetramethylammonium hydroxide thermochemolysis of model compound aliphatic and aromatic carboxylic acids: decarboxylation of some ortho- and/or parasubstituted aromatic carboxylic acids. J Anal Appl Pyrolysis, 2003, 70 (2):151-167.

引证文献2

二级引证文献6

;
使用帮助 返回顶部