摘要
目前大部分关于新能源汽车上市销售影响因素的探讨都是定性的,对于各个因素的影响程度,还存在着很大的争议,这在一定程度上阻碍了新能源汽车的市场推广步伐。通过由20位具有新能源汽车销售经历的销售人员参加的焦点小组访谈,形成了关于新能源汽车购买决策的影响因素的初步问卷。然后对4S汽车销售店客户和驾校学员进行了调查,共获得有效问卷285份。然后运用SPSS17.0采用主成分分析法进行因子分析,得出了5个新能源汽车购买决策的影响因子,分别是售后服务因子、购置成本因子、汽车品质因子、使用能耗因子和周围影响因子。调查结果表明,城市居民对新能源汽车的认知程度比较高,并具有一定的购买意愿。但由于对新能源汽车的安全保护性不足、售后服务网点密度不够和维修保养价格过高以及新能源汽车使用中的停车场所和能源再补充的便利性等方面存在担忧,消费者比较普遍的新能源汽车购买意愿并没有转化为实际的购买行为。论文最后在实证分析的基础上就新能源汽车的销售推广提出了相关建议。
Today most studies of the impact factors on new energy automobile sale are qualitative,so there are a lot of controversies on the impact degree of each factor,which has hindered the promotion of new energy automobile.According to the result of a focus group interview participated by 20 sale staff with new energy auto sales experience,a preliminary questionnaire on factors affecting the decision of new energy automobile purchasers is formed,on the base of which a survey is conducted among customers in 4S automobile sale store and students in driving school.Based on the 285 valid questionnaires received,this paper makes a principal component analysis with the help of SPSS17.0 and finds out the five factors impacting the purchase decision of new energy automobile,namely,the after-sales service factor,the acquisition cost factor,the vehicle quality factor,the power consumption factor and the surrounding factor.The survey also shows that the urban residents have a high recognition of new energy automobile as well as the will to buy,which has not been turned into the real action of purchase because they are still worried about such things as the insufficiency of safety protection of the new automobile,the lack of after-sales service shop,the high cost of maintenance and the inconvenience in parking and energy refill.In the end,the paper gives some relevant recommendations on the sales promotion of new energy automobiles on the base of empirical analysis.
出处
《中国人口·资源与环境》
CSSCI
北大核心
2010年第11期91-95,共5页
China Population,Resources and Environment
关键词
新能源汽车
购买决策
影响因素
因子分析
new energy automobile
purchase decision
impact factor
component analysis