摘要
把肝脏器官从医学图像中提取出来,为肝脏的三维重建及最终的仿真手术模拟提供正确的数据。针对腹部CT图像中脏器组织多、图像纹理结构复杂、灰度差别小、边缘不明显等特点,提出一种改进的自适应区域生长分割算法。该算法基于两个局部参数:待生长点的局部平均灰度和局部平均梯度,对传统区域生长算法的生长准则进行了改进。实验结果表明,得到的肝脏分割结果比传统区域生长算法分割结果更精确,可以为后续的肝脏三维重建及仿真手术提供准确的数据。
Extracting the human abdomen organs from medical images can provide accurate data for the following 3D reconstruction of abdomen organs and the final virtual surgery.For the complex characteristics of medical image, an improved algorithm of adaptive region growing is put forward.Based on two local parameters:The local mean value of the intensity ftmetion and the local mean value of the norm of the intensity gradient,the homogeneity criterion of this algorithm is improved.The experimental results show that: The segmentation results of the liver are more accurate by using adaptive region growing than using classical region growing algorithm,and it can provide accurate data for 3D reconstruction and surgical simulation of liver.
出处
《计算机工程与应用》
CSCD
北大核心
2010年第33期198-200,共3页
Computer Engineering and Applications
基金
国家高技术研究发展计划(863)No.2006AA02Z346
广东省自然科学基金团队项目(No.6200171)~~
关键词
分割
医学图像
虚拟手术
自适应区域生长
相似性准则
segmentation
medical image
virtual surgery
adaptive region growing
homogeneity criterion