期刊文献+

基于警示传播与DPLL算法的启发式极性决策算法 被引量:3

Heuristic Polarity Decision Making Algorithm Based on Warning Propagation and DPLL Algorithm
下载PDF
导出
摘要 警示传播(WP)算法是信息传播算法的重要基础,WP算法的本质是因子图上警示信息的迭代过程,在算法收敛时得到一组稳定的警示信息,并利用局部腔域得到公式变元的部分赋值。分析了警示传播算法的基本原理,给出了算法的改进。RB实例集上的实验证明,改进后的算法比原算法具有迭代次数和运行时间,提高了收敛速度。然而,在RB模型产生的大部分实例集上,警示传播算法不收敛,因而不能有效求解公式。警示传播算法与DPLL算法的组合使用使回溯计算次数大大降低,从而有效地弥补了WP算法的不足。通过在RB实例集上的测试实验表明,该方法是有效的。 The warning propagation(WP) algorithm is an important foundation of message propagation algorithm,the essence of the WP algorithm is the iteration process of warning message on the factor gragh.When the algorithm is convergent,it can get a set of stable warning message and get some partial assignment of formula variables by local cavity domain.The analysis of basic principle of the WP algorithm was presented,and the improvement of the algorithm was given.The experiment on the RB sets shows that the improved algorithm has fewer iteration times,less execute time and faster convergence speed than the original WP algorithm.However,in the most of the RB sets,the WP algorithm is not convergent,and then it can not solve the formula effectively.The combination of the WP and DPLL algorithm can reduce the times of the backdating calculation,and then make up the shortage of the WP algorithm.The result of the experiment on the RB sets shows that the method is effective.
出处 《计算机科学》 CSCD 北大核心 2010年第12期178-181,185,共5页 Computer Science
基金 国家自然科学基金(60863005 61011130038) 贵州省省长基金(200404) 贵州大学自然科学青年基金(2009021)资助
关键词 信息传递 警示传播算法 收敛性 DPLL算法 Message passing Warning propagation(WP) algorithm Convergence DPLL algorithm
  • 相关文献

参考文献5

二级参考文献18

  • 1黄文奇,朱虹,许向阳,宋益民.求解方格packing问题的启发式算法[J].计算机学报,1993,16(11):829-836. 被引量:14
  • 2Pomakis K P,Atlee J M. Reachability Analysis of Feature Interactions: A Progress Report. In:The international symposium on software testing and analysis. California ,United States, 1996
  • 3Heisel M,Souquieres J. A heuristic approach to detect feature interactions in requirements. In:Fifth Intl. Workshop on Feature Interactions in Telecommunications and Software Systems. Lund,Sweden, 1998
  • 4李未,中国科学.A,1994年,24卷,11期,1208页
  • 5Gu J,SIGART Bulletin,1992年,3卷,1期,8页
  • 6Gu J,1988年
  • 7黄文奇,国际离散数学与算法研讨会文集,1994年
  • 8李未,中国科学.A,1994年,25卷,1期,1208页
  • 9Gu J,Sigart Bull,1992年,3卷,1期,8页
  • 10黄文奇,应用数学学报,1979年,2期,176页

共引文献48

同被引文献47

  • 1李韶华,张健.Survey Propagation:一种求解SAT的高效算法[J].计算机科学,2005,32(1):132-137. 被引量:5
  • 2邵明,李光辉,李晓维.求解可满足问题的调查传播算法以及步长的影响规律[J].计算机学报,2005,28(5):849-855. 被引量:8
  • 3MANEVA E, MOSSEL E, WAINWRIGHT M. A new look at survey propagation and its generalizations [J].Journal of the ACM, 2007, 54(4):1089-1098.
  • 4BRAUNSTEIN A, MEZARD M, ZECCHINA R. Survey propagation: an algorithm for satisfiability [ J ]. Random Structures and Algorithms, 2005, 27(2): 201-226.
  • 5CHIEU H L, LEE W S. Relaxed survey propagation for the weighted maximum satisfiability problem[ J]. Journal of Artificial Intelligence Research, 2009, 36 ( 1 ) : 229- 266.
  • 6MONASSON R, ZECCHINA R, KIRKPATRICK S, et al. Determining computational complexity from characteristic ' phase transitions' [J].Nature, 1999, 400 ( 8 ) : 133-137.
  • 7CHEESEMAN P, KANEFSKY B, TAYLOR W M. Where the really hard problems are [ C ]//Proceedings of the 12th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 1991 : 331-337.
  • 8FRIEZE A M, MOLLOY M. The satisfiability threshold for randomly generated binary constraint satisfaction problems [ J ]. Random Structures and Algorithms, 2006, 28(3): 323-339.
  • 9MEZARD M, PARISI G, ZECCHINA R. Analytic and algorithmic solution of random satisfiability problems [J]. Science, 2002, 297(5582): 812-815.
  • 10SLANEY J, WALSH T. Backbones in optimization and approximation [ C ]//Proceedings of the 17th International Joint Conference on Artificial Intelligence. San Francisco, USA: Morgan Kaufmann, 2001: 254-259.

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部