期刊文献+

基于平滑A^*算法的移动机器人路径规划 被引量:110

Mobile Robot Optimal Path Planning Based on Smoothing A^* Algorithm
下载PDF
导出
摘要 栅格环境下A*算法规划出的移动机器人路径存在折线多、转折次数多、累计转折角度大等问题.为获得较优路径,提出平滑A*算法.在A*算法规划的路径基础上,遍历路径中的所有节点,当某一节点前后节点连线上无障碍物时,将延长线路的这一中间节点删除,建立平滑A*模型.仿真结果表明,平滑A*算法优于Ant(蚁群),Anyti me D*算法.平滑A*算法路径长度降低约5%,累计转折次数降低约50%,累计转折角度减少30%~60%.平滑A*算法能处理不同栅格规模下、障碍物随机分布的复杂环境下移动机器人路径规划问题. Path planned by A* algorithm for mobile robot under grid environment is flaw with much broken lines,frequently turning points,large cumulative turning angle.Smoothing A* is proposed in order to obtain optimum path.Based on the initial path planned by A*,traversing all the nodes on initial path,deleting the node which prolong the length of initial path as no obstacle existing on the line connected by forward and after nodes.Smoothing A* model is established after initial path processed.Simulation results show that smoothing A* exceeds Ant,Anytime D*.Length,total turning points,cumulative turning angle of path are almost reduced by 5%,50%,30%~60% respectively when smoothing A* algorithm is adopted.Path planning problem under different complex environment with random obstacles distribution can be achieved by smoothing A* algorithm.
出处 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2010年第11期1647-1650,1655,共5页 Journal of Tongji University:Natural Science
基金 国家自然科学基金重大资助项目(90924301) 国家自然科学基金资助项目(70971046)
关键词 移动机器人 路径规划 平滑A*算法 随机障碍物分布 栅格规模 moving robot path planning smoothing A* algorithm random obstacles distribution size of grid environment
  • 引文网络
  • 相关文献

参考文献10

  • 1Zamirian M, Kamyad A V, Farahi M H. A novel algorithm for solving optimal path planning problems based on parametrization method and fuzzy aggregation [J]. Physics Letters A, 2009,373 (38) :3439.
  • 2Pratihar D K, Deb K, Ghosh A. Fuzzy-genetic algorithms and time-optimal obstacle-free path generation for mobile robots[J].Engineering Optimization, 1999,32 (1) : 117.
  • 3Latombe J C. Robot motion planning[M]. Kluwer Academic Publishing, Norwell, MA, 1991.
  • 4Barraquand J, Langois B, Latombe J C. Numerical potential field techniques for robot path planning[J]. IEEE Transactions on Robotics and Automation, Man and Cybernetics, 1992, 22 (2) :224.
  • 5Begum M,Mann G K l,Gosine R G. Integrated fuzzy logic and genetic algorithmic approach for simultaneous localization and mapping of mobile robots[J]. Applied Soft Computing, 2008,8 (1) : 150 - 165.
  • 6Dijkstra E W. A note on two problems in connection with graphs[J]. Numerische Mathematik, 1959,1 (1) : 269.
  • 7Hart P E, Nilsson N J, Raphael B. A formal basis for the heuristic determination of minimum cost paths [J].IEEE Transactions on Systems, Science, and Cybernetics SSC, 1968, 4(2) : 100.
  • 8Trovato K I, Dorst L. Differential A* [J]. IEEE Transactions on Knowledge and Data Engineering, 2002,14(6) : 1218.
  • 9朱庆保,张玉兰.基于栅格法的机器人路径规划蚁群算法[J].机器人,2005,27(2):132-136. 被引量:123
  • 10Likhachev M, Ferguson D, Gordon G, et al. Anytime search in dynamic graph[J]. Artificial Intelligence,2008,172(2) : 1613.

二级参考文献7

  • 1Dorigo M,Gambardella L M,Middendorf M,et al. Guest editorial: special section on ant colony optimization[A]. IEEE Transactions on Evolutionary Computation[C]. 2002,6(4): 317-319.
  • 2Dorigo M,Dicaro G. Ant colony optimization: a new meta-heuristic[A]. Proceedings of the 1999 Congress on Evolutionary Computation[C]. Washington,DC,USA: 1999,Vol.2. 1477. 474-477.
  • 3Wang C M,Soh Y C,Wang H,et al. A hierarchical genetic algorithm for path planning in a static environment with obstacles[A]. IEEE CCECE Canadian Conference on Electrical and Computer Engineering[C]. 2002,vol.3.1652-1657.
  • 4D'Amico A,Ippoliti G,Longhi S A. Radial basis function networks approach for the tracking problem of mobile robots[A]. Proceedings of the IEEE/ASME. International Conference on Advanced Intelligent Mechatronics[C]. 2001,vol.1. 498-503.
  • 5Weerayuth N,Chaiyaratana N.Closed-loop time-optimal path planning using a multi-objective diversity control oriented genetic algorithm[A]. Systems,Man and Cybernetics[C]. IEEE International Conference on,Vol.6:7.
  • 6Bruce J,Veloso M. Real-time randomized path planning for robot navigation[A]. Intelligent Robots and Systems 2002. IEEE/RSJ International Conference on,2002,Vol.3. 2383- 2388.
  • 7Dorigo M,Maniezzo V,Colorni A. Ant system: optimization by a colony of cooperating agents[J]. IEEE Transactions on Systems ,Man and Cybernetics,Part B: Cybernetics,1996,26(1): 29-41.

共引文献122

同被引文献728

引证文献110

二级引证文献1258

;
使用帮助 返回顶部