期刊文献+

关联规则模式维护算法 被引量:1

Algorithm for Association Rules Pattern Maintenance
下载PDF
导出
摘要 大部分关联规则更新算法只考虑最小支持度这一因素,没有考虑最小置信度阈值,而在数据库更新时只考虑数据的添加,不考虑数据的删除。为此,提出一种可同时考虑上述问题的动态数据库更新算法,该算法可有效挖掘出人们感兴趣的知识,并能节省大量挖掘时间。实验结果表明,该算法是切实可行的。 As the majority updating algorithms for association rules have the same shortcomings which only take account of the minimum support and data increase, without the minimum confidence and data decrease. This paper proposes a new updating algorithm for dynamic database which can avoid some shortcomings of the above. It can effectively mine some interested knowledge and save a large amount of mining time. Experimental result shows that the proposed approach is feasible.
出处 《计算机工程》 CAS CSCD 北大核心 2010年第24期36-38,共3页 Computer Engineering
基金 安徽省高校省级重点自然科学研究计划基金资助项目(KJ2008A35ZC)
关键词 关联规则 支持度 置信度 增量更新算法 association rules support confidence incremental updating algorithm
  • 相关文献

参考文献5

二级参考文献23

  • 1牛小飞,石冰,卢军,吴科.挖掘关联规则的高效ABM算法[J].计算机工程,2004,30(11):118-120. 被引量:16
  • 2商志会,陶树平.一种高效的关联规则增量更新算法[J].计算机应用,2005,25(4):830-832. 被引量:5
  • 3Omiecinski S E, Navathe S. An Efficient Algorithm for Mining Association Rules in Large Databases[R].ln:Proceeding of the 21st Intemational Conference on Very Large Database,Zilrich,Swizerland, 1995-09:432-444.
  • 4Agrawal R. Mining Association Rules Between Sets of Items in Large Databases. In: Proceedings of ACM SIGMOD Conference on Management of Data, Washington,DC, 1993-05:207-216.
  • 5Agrawal R, Srikant R.Fast Algorithms for Mining Association Rules.In:Proceedings of the 20^th International Conference on Very Large Databases,Santiago,Chlie, 1994-09:487-499.
  • 6Cheung D W. Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Rechnique.In:Proceedings of the 12th International Conference on Data Engineering, New Orleans, Lousiana, 1996:106-114.
  • 7David W Cheung,Jiawei Han,Vincent Ng et al.Maintenance of Discovered Association Rules in Large Database:an Incremental Updating Technique[C].In:Proceeding of 12th International Conference on Data Engineering(ICDE96),New Orleans,Louisana,1996-02:106~114
  • 8Han Jiawei, Kamber M. Data mining: Concepts and techniques [M]. Beijing: Higher Education Press, 2001
  • 9Agrawal R. Mining Association Rules Between Sets of Items in Large Database[C]. In: Proc. of ACM SIGMOD Conf. on Management of Data, Washington, 1993. 207~216
  • 10Cheung D W. Maintenance of Discovered Association Rules in Large Databases: An Incremental Updating Technique. In: Proc. of the 12th Intl. Conf. on Data Engineering, New Orleans, Louisi ana, 1996. 106~114

共引文献19

同被引文献19

  • 1Han Jiawei,Kamber Micheline,范明,孟小峰,等译.数据挖掘概念与技术[M].北京:机械工业出版社,2007:424-479.
  • 2SUGUNA N, THANUSHKODI K G. An independent rough set approach hybrid with artificial bee colony al- gorithm for dimensionality reduction[J]. AmericanJournal of Applied Sciences, 2011, 8(3): 261-266.
  • 3WEN Jiahui, ZHONG Mingyang, WANG Zhiying. Ac- tivity recognition with weighted frequent patterns min- ing in smart environments [J]. Expert Systems with Applications, 2015, 42(17): 6423 -6432.
  • 4ZHANG Zheng, TANG Ping, DUAN Rubing. Dynamic time warping under pointwise shape context, Informa- tion Sciences[J]. 2015, 4(315) : 88-101.
  • 5ALTINEL B, GANIZ M C, DIRI B. A corpus-based semantic kernel for text classification by using meaning values of terms [J]. Engineering Applications of Artifi- cial Intelligence, 2015, 43: 54-66.
  • 6CAMPAGNI R, MERLINI D, SPRUGNOLI R, et al. Data mining models for student careers[J]. Expert Svstems with ADDlications, 2015, 42(13): 5508-5521.
  • 7石夫乾,孙守迁,徐江.基于粗糙集的感性知识关联规则挖掘研究[J].计算机集成制造系统,2008,14(2):407-411. 被引量:11
  • 8张寒云,段鹏,丁钦华.基于关联规则的课程拓扑排序研究[J].云南民族大学学报(自然科学版),2009,18(2):177-179. 被引量:5
  • 9贺超波,陈启买.基于粗糙集的关联规则挖掘方法[J].计算机应用,2010,30(1):25-28. 被引量:7
  • 10李忠哗,王凤利,何丕廉.关联规则挖掘在课程相关分析中的应用[J].河北农业大学学报,2010,33(3):116-119. 被引量:11

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部