期刊文献+

自适应T样条曲面重建 被引量:9

Automatic reconstruction of T-spline surfaces
原文传递
导出
摘要 为了进行快速高精度的曲面重建,提出了一种新的基于T样条的曲面自动重建算法。由于T样条控制网格具有特殊性质,因此在使用T样条进行曲面重建时,一个关键的问题是如何构造好一个T网格。该新算法在进行曲面重建时,用三角网格的参数化方法,先将数据点同胚映射到平面,然后再利用平面四叉树细分的方法将无结构散乱数据自动生成合理有效的T网格,最后将曲面重构模型转化为最优化问题,并由最小二乘法求解,同时在误差较大的区域辅以T样条的局部修正,以使重建曲面与原网格面的最大误差小于指定的误差值。由于该新的曲面重建方法是一个基于细节的重建方法,因此采样点密集区域所插入的T网格点也就相应地增多,这样既抓住了网格曲面的特征,又能很好地减少过多的T网格控制顶点,这就提高了算法效率。另外,该新算法还具有高效、易操作、能适应复杂曲面重建、曲面自动生成且满足相应精度要求等优点。重构结果显示,该新的曲面重建算法不仅重构应用范围广,且重构精度高。 A new procedure for reconstructing a smooth parametric surfaces using T-Splines from a triangulation mesh was present in this paper . In our solution, a key ingredient is that the scheme for automatically extract a quad-dominant control mesh (T-mesh) and a parameterization of the data points over the T-mesh . We use the discrete conformal parameterlzatlon as the solution of choice for mapping the 3 D triangular mesh to a 2D domain, and we partition this two dimensional space by recursively subdividing it into four quadrants, then automatically constructing the T-mesh that we need for the reconstructing. By using least square approximation we can get the control point of the surface and finish our algorithm until the approximation error below a specified threshold. We use adaptive refinement of the T-mesh in order to satisfy user- specified error tolerances and demonstrate our method on real data.
出处 《中国图象图形学报》 CSCD 北大核心 2010年第12期1818-1825,共8页 Journal of Image and Graphics
基金 国家自然科学基金项目(10772082)
关键词 T样条 T网格 拟合 曲面重建 T-spline T-mesh fitting surface reconstruction
  • 相关文献

参考文献13

  • 1Horuung A, Kobbelt L. Robust reconstruction of watertight 3D models from non-uniformly sampled point clouds without normal information [ C ]//Proceedings of Eurographics Symposium on Geometry Processing ( SGP2006 ) , Aire-la, Geneva, Switzerland- Ville : Earographies Association, 2006 : 41 - 50.
  • 2Sederberg T W, Zheng J, Bakenov A, et al. T-splines and T-NURCCS [ J ]. ACM Transactions on Graphics, 2003, 23 (3) : 161- 172.
  • 3Sederberg T W, Cardon D L, Finnigan G T, et al. T-spline simplification and local refinement [J]. ACM Transactions on Graphics, 2004, 23 (3) : 276-28.
  • 4Wang Yimin, Zheng Jianmin. Control point removal algorithm for T-spline surfaces [ C ]//Proceedings of Geometric Modeling and Processing. Pittsburgh, PA, USA : GMP,2006 : 385- 396.
  • 5Deng Jiansong, Chen Falai, Feng Yuyu. Dimensions of spline spaces over T-mehes[ J]. Journal of Computational and Applied Mathematics, 2006, 194 (2) : 267-283.
  • 6Li Xin, Deng Jiansong, Chen Falai. Surface modeling with polynomial splines over hierarchical T-meshes [ J ]. The Visual Computer,2007,23 ( 12 ) : 1027- 1033.
  • 7Yang H, Fuchs M, Juttler B. 3D shape metamorphosis based on T-Spline level sets[ J]. The Visual Computer, 2007, 23 (12): 1015- 1025.
  • 8童伟华,冯玉瑜,陈发来.基于隐式T样条的曲面重构算法[J].计算机辅助设计与图形学学报,2006,18(3):358-365. 被引量:10
  • 9Zheng J, Wang Y, Seah H S. Adaptive T-spline surface fitting to z-map models [ C ] // Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia. New York, USA : GRAPHITE, 2005 : 405- 411.
  • 10Rayn N, Li W C, Levy B, et al. Periodic global parameterization [I]. Accepted Pending Revisions, 2006, (4) : 1460-1485.

二级参考文献26

  • 1Sederberg T W,Zheng J,Bakenov A,et al.T-splines and T-NURCCs[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Diego,California,2003:477-484
  • 2Sederberg T W,Cardon D L,Finnigan G T,et al.T-spline simplification and local refinement[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,Los Angeles,California,2004:276-283
  • 3Jüttler B,Felis A.Least-squares fitting of algebraic spline surfaces[J].Advances in Computational Mathematics,2002,17(1):135-152
  • 4Golub G,van Loan C F.Matrix computations[M].3rd ed.Baltimore:John Hopkins University Press,1996
  • 5Bloomenthal J,Bajaj C,Blinn J,et al.Introduction to implicit surfaces[M].Burlington:Morgan Kaufmann,1997
  • 6Ju T,Losasso F,Schaefer S,et al.Dual contouring of hermite data[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Antonio,Texas,2002:339-346
  • 7Ohtake Y,Belyaev A,Alexa M,et al.Multi-level partition of unity implicits[C]//Computer Graphics Proceedings,Annual Conference Series,ACM SIGGRAPH,San Diego,California,2003:463-470
  • 8Ronald J B,Suffer K G,Kevin G.Visualization of implicit surfaces[J].Computer and Graphics,2001,25(1):89-107
  • 9Hart J C.Sphere tracing:A geometric method for the antialiased ray tracing of implicit surfaces[J].The Visual Computer,1996,12(10):527-545
  • 10Edelsbrunner H,Mücke E P.Three-dimensional alpha shapes[J].ACM Transactions on Graphics,1994,13(1):43-72

共引文献9

同被引文献51

引证文献9

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部