摘要
运用初等方法证明了对于任何正奇数n,不定方程x2+y4=zn都有无穷多组正整数解(x,y,z),并且给出了该方程的一类非本原解(x,y,z).
By some elementary methods,it was proven that,for any positive odd integer n,the Diopha-ntine equation x2+y4=zn had infinitely many positive integer solutions(x,y,z).Moreover,a class of non-primitive solutions(x,y,z) of the equation were given.
出处
《湖南文理学院学报(自然科学版)》
CAS
2010年第4期17-18,共2页
Journal of Hunan University of Arts and Science(Science and Technology)
基金
泰州师范高等专科学校重点课题资助项目(2009-ASL-04)。
关键词
不定方程
正奇数
非本原解
diophantine equation
positive odd integer
non-primitive solution