摘要
提出了一种基于图像局部保留投影(ILPP)的人脸表情识别方法,该算法在降维过程中将图像结构信息融入到局部保留投影(LPP)目标函数中。与LPP不同,ILPP通过降维处理,获得表情图像结构信息的同时将投影最优化,这样可从原始表情数据中提取更多、更有效、更具判决性的表情特征信息。基于CED-WYU(1.0)和JAFFE两个表情数据库的识别结果表明,ILPP特征提取方法能有效地提高识别率。
A facial expression recognition method based on Image Locality Preserving Projection(ILPP) was proposed.Unlike Locality Preserving Projection(LPP),ILPP incorporated graph construction into the LPP objective function in dimension reduction process,and thus obtained a simultaneous learning framework for graph construction and projection optimization,ILPP could extract more useful and decisional expression features from the original expression data.The experimental results on CED-WYU(1.0) and JAFFE show that ILPP is an effective method for improving the recognition accuracy.
出处
《计算机应用》
CSCD
北大核心
2010年第12期95-96,99,共3页
journal of Computer Applications
关键词
降维
局部保留投影
图像局部保留投影
表情识别
dimension reduction
Locality Preserving Projection(LPP)
Image Locality Preserving Projection(ILPP)
expression recognition