期刊文献+

一种新的改进高斯粒子滤波算法及其在SINS/GPS深组合导航系统中的应用 被引量:13

Novel Gaussian particle filter and it's application in deeply integrated SINS/GPS navigation system
原文传递
导出
摘要 针对组合导航系统中出现的线性非线性混合滤波模型,提出一种新的混合高斯粒子滤波算法(MGPF).该滤波算法在状态更新过程中借鉴线性卡尔曼滤波思想直接更新状态量的高斯分布参数,而非逐个更新每个粒子,因此很大程度上减少了高斯粒子滤波算法(GPF)的计算量,同时滤波精度也有一定的提高.建立了捷联惯性导航系统与全球卫星定位系统(SINS/GPS)相结合的深组合滤波模型,并对新算法MGPF进行了仿真验证,所得结果表明了该算法的有效性. For mixture linear and nonlinear model in integrated navigation system, a new algorithm of mixture Gaussian particle filtering(MGPF) is proposed. The stage of GPF state updating can be improved with the thought of Kalman filter (KF). The updating stage is to update Gaussian distribution parameters of the particle rather than update all particles one by one. Compared with the traditional GPF, the novel algorithm can improve filtering precision and reduce filtering time. The MGPF algorithm is applied to SINS/GPS integrated navigation model. The simulation experiment on the established model shows the effectiveness of the algorithm.
出处 《控制与决策》 EI CSCD 北大核心 2011年第1期85-88,95,共5页 Control and Decision
基金 国家自然科学基金项目(60702003) 航空科学基金项目(20090852012)
关键词 高斯粒子滤波 非线性滤波 组合导航 捷联/卫星 Gausian particle filter nonlinear filter integrated navigation SINS/GPS
  • 引文网络
  • 相关文献

参考文献11

  • 1Giremus A, Tourneret J Y, Calmettes V. A particle filtering approach for joint detection/estimation of multipath effects on GPS measurements[J]. Signal Processing, 2007, 55(4): 1275-1285.
  • 2Miller I, Campbell M. Particle filtering for map-aided localization in sparse GPS environments[C]. IEEE Int Conf on Robotics and Automation. Pasadena, 2008:1834-1841.
  • 3Aggarwal P, Syed Z, E1-Sheimy N. Hybrid extended particle filter(HEPF) for integrated civilian navigation system[C]. IEEE/ION Position, Location and Navigation Symposium. Monterey, 2008: 984-992.
  • 4Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J]. IEEE Trans on Signal Processing, 2005, 53(7): 2279-2289.
  • 5Kotecha J H, Djuri6 P M. Gaussian particle filtering[J]. IEEE Trans on Signal Processing, 2003, 5t(10): 2592- 2601.
  • 6Wu Y X, Hu D W, Wu M P, et al. Quasi-Gaussianparticle filtering[C]. Int Conf on Computational Science. Glasgow, 2006: 689-696.
  • 7Yang D K, Zhou X L. U-GPF information fusion algorithm for GPS/DR integrated positioning systemiC]. Int Conf on Machine Learning and Cybernetics. Hong Kong, 2007: 1424-1427.
  • 8Kotecha J H, Djurik P M. Gaussian sum particle filtering[J]. IEEE Trans on Signal Processing, 2003, 51(10): 2603- 2613.
  • 9Schon T, Gustafsson F, Nordlund P J. Marginalized particle filters for mixed linear/nonlinear state-space models[J]. IEEE Trans on Signal Processing, 2005,53(7): 2279-2289.
  • 10鲍其莲,周媛媛.基于UKF的GPS/SINS伪距(伪距率)组合导航系统设计[J].中国惯性技术学报,2008,16(1):78-81. 被引量:20

二级参考文献15

  • 1段方,刘建业,李荣冰.基于平淡卡尔曼滤波器的微小卫星姿态确定算法[J].上海交通大学学报,2005,39(11):1899-1903. 被引量:12
  • 2Bao Lingchan,Doucet A,Tadic V B.Optimisation of particle filters using simultaneous perturbation stochastic approximation[J].Acoustics,Speech,and Signal Processing,2003,6 (Ⅵ):681-684.
  • 3Arulampalam M S,Maskell S,Gordon N,et al.A tutorial on particle filters for online nonlinear/nonGaussian Bayesian tracking[J].Signal Processing,2002,50(2):174-188.
  • 4Julier S J,Uhlmann J K.Unscented filtering and nonlinear estimation[J].Proceedings of the IEEE,2004,92(3):401-422.
  • 5Wendel J,Trommer G F.Tightly coupled GPS/INS integration for missile applications[J].Aerospace Science and Technology,2004,8(7):627-634.
  • 6Giremus A,Doucet A,Vincent C,et al.A raoblackwellized particle filter for INS/GPS integration[J].Acoustics,Speech,and Signal Processing,2004(3):964-967.
  • 7Carvalho H,Del Moral P,Monin A,et al.Optimal nonlinear filtering in GPS/INS integration[J].Aerospace and Electronic Systems,1997 (5):835-850.
  • 8WANG Wei, LIU Zong-yu, XIE Rong-rong, An improved tightly coupled approach for GPS/INS integration[C]//2004 IEEE Conference on Robotics, Automation and Mechatroics, 1-3 Dec. 2004, Vol.2:1164-1167.
  • 9Julier S J, Uhlmann J K. Unscented filtering and nonlinear estimation[J]. IEEE Review, 2004, 92(3): 401-422.
  • 10Julier S J, Laviola J J. On Kalman filtering with nonlinear equality constranits[J]. IEEE Transactions on Signal Processing, 2007, 55(6): 2774-2784.

共引文献28

同被引文献128

引证文献13

二级引证文献45

;
使用帮助 返回顶部